太阳动力学观测站图像中日冕分割的多通道方法

S. Suresh, R. Dube
{"title":"太阳动力学观测站图像中日冕分割的多通道方法","authors":"S. Suresh, R. Dube","doi":"10.1109/WNYIPW.2012.6466653","DOIUrl":null,"url":null,"abstract":"We present a multi-channel segmentation scheme to identify different features of the solar corona, such as coronal holes, active regions and the quiet sun (especially in the ultraviolet and extreme ultraviolet images). In contrast to common techniques, we use an approach that uses image intensity and relative contribution of each of the wavelengths. This approach is illustrated by using the images taken by the AIA telescopes onboard of the SDO mission. This technique incorporates a nearest-neighbor based classifier followed by Moore-neighbor tracing algorithm to find the boundaries and track the regions of interest. This method requires less computation time as compared to the commonly used fuzzy logic methods and is robust in the sense it performs equally well in both the central and limb regions of the solar disc.","PeriodicalId":218110,"journal":{"name":"2012 Western New York Image Processing Workshop","volume":"4 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A multi-channel approach for segmentation of solar corona in images from the solar dynamics observatory\",\"authors\":\"S. Suresh, R. Dube\",\"doi\":\"10.1109/WNYIPW.2012.6466653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a multi-channel segmentation scheme to identify different features of the solar corona, such as coronal holes, active regions and the quiet sun (especially in the ultraviolet and extreme ultraviolet images). In contrast to common techniques, we use an approach that uses image intensity and relative contribution of each of the wavelengths. This approach is illustrated by using the images taken by the AIA telescopes onboard of the SDO mission. This technique incorporates a nearest-neighbor based classifier followed by Moore-neighbor tracing algorithm to find the boundaries and track the regions of interest. This method requires less computation time as compared to the commonly used fuzzy logic methods and is robust in the sense it performs equally well in both the central and limb regions of the solar disc.\",\"PeriodicalId\":218110,\"journal\":{\"name\":\"2012 Western New York Image Processing Workshop\",\"volume\":\"4 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Western New York Image Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WNYIPW.2012.6466653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Western New York Image Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WNYIPW.2012.6466653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种多通道分割方案,以识别日冕的不同特征,如日冕洞、活动区域和安静太阳(特别是在紫外线和极紫外线图像中)。与常用技术相比,我们使用一种方法,利用图像强度和每个波长的相对贡献。使用SDO任务上的AIA望远镜拍摄的图像说明了这种方法。该技术结合了基于最近邻的分类器和Moore-neighbor跟踪算法来找到边界并跟踪感兴趣的区域。与常用的模糊逻辑方法相比,该方法需要更少的计算时间,并且在太阳盘的中心和边缘区域都具有同样的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multi-channel approach for segmentation of solar corona in images from the solar dynamics observatory
We present a multi-channel segmentation scheme to identify different features of the solar corona, such as coronal holes, active regions and the quiet sun (especially in the ultraviolet and extreme ultraviolet images). In contrast to common techniques, we use an approach that uses image intensity and relative contribution of each of the wavelengths. This approach is illustrated by using the images taken by the AIA telescopes onboard of the SDO mission. This technique incorporates a nearest-neighbor based classifier followed by Moore-neighbor tracing algorithm to find the boundaries and track the regions of interest. This method requires less computation time as compared to the commonly used fuzzy logic methods and is robust in the sense it performs equally well in both the central and limb regions of the solar disc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信