存在a类脉冲噪声时信道估计的最优误差非线性设计

M. Arif, I. Naseem, M. Moinuddin, U. M. Al-Saggaf
{"title":"存在a类脉冲噪声时信道估计的最优误差非线性设计","authors":"M. Arif, I. Naseem, M. Moinuddin, U. M. Al-Saggaf","doi":"10.1109/ICIAS.2016.7824137","DOIUrl":null,"url":null,"abstract":"In this work an optimum error nonlinearity is derived for the channel estimation in the existence of class-A impulsive noise. The main idea of the design is based on minimizing the steady-state error to reach the limit dictated by the Cramer-Rao Lower Bound (CRLB) of the implicit estimation process. By using the proposed method, optimum error nonlinearity is devised for long adaptive filters without employing any assumption on the distribution input regressor constituents and on the noise distribution, independence input regressor assumption and any kind of linearization. Moreover, to implement the proposed design, two different methods for estimating the variance of a priori estimation error are developed. Furthermore, an intelligent switching mechanism is also introduced to efficiently utilize the designed optimum error non-linearity for the impulsive noise. The theoretical results are testify through simulations, to show the superiority of the designed optimum error nonlinearity.","PeriodicalId":247287,"journal":{"name":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Design of optimum error nonlinearity for channel estimation in the presence of class-A impulsive noise\",\"authors\":\"M. Arif, I. Naseem, M. Moinuddin, U. M. Al-Saggaf\",\"doi\":\"10.1109/ICIAS.2016.7824137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work an optimum error nonlinearity is derived for the channel estimation in the existence of class-A impulsive noise. The main idea of the design is based on minimizing the steady-state error to reach the limit dictated by the Cramer-Rao Lower Bound (CRLB) of the implicit estimation process. By using the proposed method, optimum error nonlinearity is devised for long adaptive filters without employing any assumption on the distribution input regressor constituents and on the noise distribution, independence input regressor assumption and any kind of linearization. Moreover, to implement the proposed design, two different methods for estimating the variance of a priori estimation error are developed. Furthermore, an intelligent switching mechanism is also introduced to efficiently utilize the designed optimum error non-linearity for the impulsive noise. The theoretical results are testify through simulations, to show the superiority of the designed optimum error nonlinearity.\",\"PeriodicalId\":247287,\"journal\":{\"name\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS.2016.7824137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS.2016.7824137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文推导了存在a类脉冲噪声时信道估计的最优误差非线性。该设计的主要思想是基于最小化稳态误差以达到隐式估计过程的Cramer-Rao下界(CRLB)所规定的极限。利用该方法设计了长自适应滤波器的最优误差非线性,而不需要对输入回归量成分的分布、噪声分布、独立输入回归量假设和任何线性化的假设。此外,为了实现所提出的设计,开发了两种不同的方法来估计先验估计误差的方差。此外,还引入了智能开关机构,有效地利用了所设计的脉冲噪声的最优误差非线性。通过仿真验证了理论结果,证明了所设计的最优误差非线性的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of optimum error nonlinearity for channel estimation in the presence of class-A impulsive noise
In this work an optimum error nonlinearity is derived for the channel estimation in the existence of class-A impulsive noise. The main idea of the design is based on minimizing the steady-state error to reach the limit dictated by the Cramer-Rao Lower Bound (CRLB) of the implicit estimation process. By using the proposed method, optimum error nonlinearity is devised for long adaptive filters without employing any assumption on the distribution input regressor constituents and on the noise distribution, independence input regressor assumption and any kind of linearization. Moreover, to implement the proposed design, two different methods for estimating the variance of a priori estimation error are developed. Furthermore, an intelligent switching mechanism is also introduced to efficiently utilize the designed optimum error non-linearity for the impulsive noise. The theoretical results are testify through simulations, to show the superiority of the designed optimum error nonlinearity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信