广义判别最小二乘回归模型

Haoliang Yuan, Junjie Zheng, Fangyuan Xu, L. L. Lai, Weiyang Li, Houqing Zheng, Zhimin Wang
{"title":"广义判别最小二乘回归模型","authors":"Haoliang Yuan, Junjie Zheng, Fangyuan Xu, L. L. Lai, Weiyang Li, Houqing Zheng, Zhimin Wang","doi":"10.1109/ACPR.2017.3","DOIUrl":null,"url":null,"abstract":"Least squares regression (LSR) is a fundamental tool in statistics theory. In this paper, we propose a generalized discriminative least squares regression (GDLSR) model for multicategory classification. The main motivation of GDLSR is to introduce a translation matrix to enhance the flexibility of the target matrix. Through adding the graph constraint into the translation matrix, GDLSR can make the samples in the same class have similar translation vectors. To optimize our proposed GDLSR, an efficient iteration algorithm is proposed to find the global optimal solution. Extensive experiments results on face data sets confirm the effectiveness of GDLSR.","PeriodicalId":426561,"journal":{"name":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Generalized Discriminative Least Squares Regression Model\",\"authors\":\"Haoliang Yuan, Junjie Zheng, Fangyuan Xu, L. L. Lai, Weiyang Li, Houqing Zheng, Zhimin Wang\",\"doi\":\"10.1109/ACPR.2017.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Least squares regression (LSR) is a fundamental tool in statistics theory. In this paper, we propose a generalized discriminative least squares regression (GDLSR) model for multicategory classification. The main motivation of GDLSR is to introduce a translation matrix to enhance the flexibility of the target matrix. Through adding the graph constraint into the translation matrix, GDLSR can make the samples in the same class have similar translation vectors. To optimize our proposed GDLSR, an efficient iteration algorithm is proposed to find the global optimal solution. Extensive experiments results on face data sets confirm the effectiveness of GDLSR.\",\"PeriodicalId\":426561,\"journal\":{\"name\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACPR.2017.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th IAPR Asian Conference on Pattern Recognition (ACPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACPR.2017.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最小二乘回归(LSR)是统计学理论中的一个基本工具。本文提出了一种广义判别最小二乘回归(GDLSR)模型用于多类别分类。GDLSR的主要动机是引入平移矩阵以增强目标矩阵的灵活性。通过在平移矩阵中加入图约束,GDLSR可以使同一类样本具有相似的平移向量。为了优化我们提出的GDLSR,提出了一种高效的迭代算法来寻找全局最优解。在人脸数据集上的大量实验结果证实了GDLSR的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generalized Discriminative Least Squares Regression Model
Least squares regression (LSR) is a fundamental tool in statistics theory. In this paper, we propose a generalized discriminative least squares regression (GDLSR) model for multicategory classification. The main motivation of GDLSR is to introduce a translation matrix to enhance the flexibility of the target matrix. Through adding the graph constraint into the translation matrix, GDLSR can make the samples in the same class have similar translation vectors. To optimize our proposed GDLSR, an efficient iteration algorithm is proposed to find the global optimal solution. Extensive experiments results on face data sets confirm the effectiveness of GDLSR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信