一类一般lorenz型新混沌系统的极限界和正不变集的估计

Zhengwen Tu, Jigui Jian
{"title":"一类一般lorenz型新混沌系统的极限界和正不变集的估计","authors":"Zhengwen Tu, Jigui Jian","doi":"10.1109/IWCFTA.2010.18","DOIUrl":null,"url":null,"abstract":"To estimate the ultimate bound and positively invariant set of a dynamic system is an important but quite challenging task. In this paper, we attempt to investigate the ultimate bounds and positively invariant sets for a class of more general Lorenz-type new chaotic systems. We derive some ellipsoidal estimates of the globally exponentially attractive set and positively invariant set of the general Lorenz-type new system for all the positive values of its parameters via the generalized Lyapunov function theory. Furthermore, the estimations derived here contain the results given in as special cases and can lead to a series of new estimations.","PeriodicalId":157339,"journal":{"name":"2010 International Workshop on Chaos-Fractal Theories and Applications","volume":"3 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimating the Ultimate Bounds and Positively Invariant Sets for a Class of General Lorenz-type New Chaotic Systems\",\"authors\":\"Zhengwen Tu, Jigui Jian\",\"doi\":\"10.1109/IWCFTA.2010.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To estimate the ultimate bound and positively invariant set of a dynamic system is an important but quite challenging task. In this paper, we attempt to investigate the ultimate bounds and positively invariant sets for a class of more general Lorenz-type new chaotic systems. We derive some ellipsoidal estimates of the globally exponentially attractive set and positively invariant set of the general Lorenz-type new system for all the positive values of its parameters via the generalized Lyapunov function theory. Furthermore, the estimations derived here contain the results given in as special cases and can lead to a series of new estimations.\",\"PeriodicalId\":157339,\"journal\":{\"name\":\"2010 International Workshop on Chaos-Fractal Theories and Applications\",\"volume\":\"3 8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Workshop on Chaos-Fractal Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCFTA.2010.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Chaos-Fractal Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2010.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

动态系统的极限界和正不变集的估计是一个重要而又具有挑战性的问题。在本文中,我们试图研究一类更一般的lorenz型新混沌系统的极限界和正不变集。利用广义Lyapunov函数理论,给出了一般lorenz型新系统的全局指数吸引集和正不变集的椭圆估计。此外,这里导出的估计包含了作为特殊情况给出的结果,并可能导致一系列新的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating the Ultimate Bounds and Positively Invariant Sets for a Class of General Lorenz-type New Chaotic Systems
To estimate the ultimate bound and positively invariant set of a dynamic system is an important but quite challenging task. In this paper, we attempt to investigate the ultimate bounds and positively invariant sets for a class of more general Lorenz-type new chaotic systems. We derive some ellipsoidal estimates of the globally exponentially attractive set and positively invariant set of the general Lorenz-type new system for all the positive values of its parameters via the generalized Lyapunov function theory. Furthermore, the estimations derived here contain the results given in as special cases and can lead to a series of new estimations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信