基于块熵和高阶马尔可夫模型的有限状态机复合序列压缩

R. Marculescu, Diana Marculescu, Massoud Pedram
{"title":"基于块熵和高阶马尔可夫模型的有限状态机复合序列压缩","authors":"R. Marculescu, Diana Marculescu, Massoud Pedram","doi":"10.1145/263272.263325","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to provide an effective technique far accurate modeling of the external input sequences that affect the behavior of Finite State Machines (FSMs). Based on the block entropy concept, we present a technique for identifying the order of variable-order Markov sources of information. Furthermore, using dynamic Markov modeling, we propose an effective approach to compact an initial sequence into a much shorter equivalent one. The compacted sequence, can be subsequently used with any available simulator to derive the steady-state and transition probabilities, and the total power consumption in the target circuit. As the results demonstrate, large compaction ratios of orders of magnitude can be obtained without significant loss (less than 5% on average) in the accuracy of estimated values.","PeriodicalId":334688,"journal":{"name":"Proceedings of 1997 International Symposium on Low Power Electronics and Design","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Composite sequence compaction for finite-state machines using block entropy and high-order Markov models\",\"authors\":\"R. Marculescu, Diana Marculescu, Massoud Pedram\",\"doi\":\"10.1145/263272.263325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to provide an effective technique far accurate modeling of the external input sequences that affect the behavior of Finite State Machines (FSMs). Based on the block entropy concept, we present a technique for identifying the order of variable-order Markov sources of information. Furthermore, using dynamic Markov modeling, we propose an effective approach to compact an initial sequence into a much shorter equivalent one. The compacted sequence, can be subsequently used with any available simulator to derive the steady-state and transition probabilities, and the total power consumption in the target circuit. As the results demonstrate, large compaction ratios of orders of magnitude can be obtained without significant loss (less than 5% on average) in the accuracy of estimated values.\",\"PeriodicalId\":334688,\"journal\":{\"name\":\"Proceedings of 1997 International Symposium on Low Power Electronics and Design\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1997 International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/263272.263325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1997 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/263272.263325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文的目的是为影响有限状态机行为的外部输入序列提供一种有效的精确建模技术。基于块熵的概念,提出了一种识别变阶马尔可夫信息源顺序的方法。此外,利用动态马尔可夫模型,我们提出了一种将初始序列压缩成更短的等效序列的有效方法。压缩序列,随后可以与任何可用的模拟器一起使用,以导出稳态和转移概率,以及目标电路中的总功耗。结果表明,可以在没有显著损失(平均小于5%)的情况下获得数量级的大压实比。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Composite sequence compaction for finite-state machines using block entropy and high-order Markov models
The objective of this paper is to provide an effective technique far accurate modeling of the external input sequences that affect the behavior of Finite State Machines (FSMs). Based on the block entropy concept, we present a technique for identifying the order of variable-order Markov sources of information. Furthermore, using dynamic Markov modeling, we propose an effective approach to compact an initial sequence into a much shorter equivalent one. The compacted sequence, can be subsequently used with any available simulator to derive the steady-state and transition probabilities, and the total power consumption in the target circuit. As the results demonstrate, large compaction ratios of orders of magnitude can be obtained without significant loss (less than 5% on average) in the accuracy of estimated values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信