通过检测识别:通过部分配置的特征映射来感知人体运动

Lei Wang, Jun Wu, Zhimin Zhou, Yuncai Liu, Xu Zhao
{"title":"通过检测识别:通过部分配置的特征映射来感知人体运动","authors":"Lei Wang, Jun Wu, Zhimin Zhou, Yuncai Liu, Xu Zhao","doi":"10.1109/ICMEW.2014.6890599","DOIUrl":null,"url":null,"abstract":"Visually perceiving human motion at semantic level is an important however challenging problem in multimedia area. In this work, we propose a novel approach to map the low-level responses from visual detection to semantically sensitive description to human actions. The feature map is triggered by the output of deformable part model detection, in which the critical information about body parts configuration is contained implicitly under the specific human actions. We map the filter responses of the detectors to an effective feature description, which encodes the position and appearance information of the root and every body parts simultaneously. Statistically, the obtained feature map captures the significance of relative configuration of body parts, therefore is robust to the false detections occurred in the individual part detectors. We conduct comprehensive experiments and the results show that the method generates discriminative action features and achieves remarkable performance in most of the cases.","PeriodicalId":178700,"journal":{"name":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Recognition by detection: Perceiving human motion through part-configured feature maps\",\"authors\":\"Lei Wang, Jun Wu, Zhimin Zhou, Yuncai Liu, Xu Zhao\",\"doi\":\"10.1109/ICMEW.2014.6890599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visually perceiving human motion at semantic level is an important however challenging problem in multimedia area. In this work, we propose a novel approach to map the low-level responses from visual detection to semantically sensitive description to human actions. The feature map is triggered by the output of deformable part model detection, in which the critical information about body parts configuration is contained implicitly under the specific human actions. We map the filter responses of the detectors to an effective feature description, which encodes the position and appearance information of the root and every body parts simultaneously. Statistically, the obtained feature map captures the significance of relative configuration of body parts, therefore is robust to the false detections occurred in the individual part detectors. We conduct comprehensive experiments and the results show that the method generates discriminative action features and achieves remarkable performance in most of the cases.\",\"PeriodicalId\":178700,\"journal\":{\"name\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMEW.2014.6890599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMEW.2014.6890599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在语义层面上视觉感知人体运动是多媒体领域中一个重要而又具有挑战性的问题。在这项工作中,我们提出了一种新的方法来映射从视觉检测到对人类行为的语义敏感描述的低级反应。该特征映射由可变形部件模型检测的输出触发,其中人体部件配置的关键信息隐式地包含在特定的人体动作下。我们将检测器的滤波响应映射到有效的特征描述,该特征描述同时编码了根和每个身体部位的位置和外观信息。统计上,所获得的特征映射捕获了身体部位相对构型的显著性,因此对单个部位检测器中出现的错误检测具有鲁棒性。我们进行了全面的实验,结果表明,该方法产生了判别动作特征,并在大多数情况下取得了显着的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Recognition by detection: Perceiving human motion through part-configured feature maps
Visually perceiving human motion at semantic level is an important however challenging problem in multimedia area. In this work, we propose a novel approach to map the low-level responses from visual detection to semantically sensitive description to human actions. The feature map is triggered by the output of deformable part model detection, in which the critical information about body parts configuration is contained implicitly under the specific human actions. We map the filter responses of the detectors to an effective feature description, which encodes the position and appearance information of the root and every body parts simultaneously. Statistically, the obtained feature map captures the significance of relative configuration of body parts, therefore is robust to the false detections occurred in the individual part detectors. We conduct comprehensive experiments and the results show that the method generates discriminative action features and achieves remarkable performance in most of the cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信