{"title":"局部搜索增强的高维文本数据迭代聚类","authors":"I. Dhillon, Yuqiang Guan, J. Kogan","doi":"10.1109/ICDM.2002.1183895","DOIUrl":null,"url":null,"abstract":"The k-means algorithm with cosine similarity, also known as the spherical k-means algorithm, is a popular method for clustering document collections. However spherical k-means can often yield qualitatively poor results, especially when cluster sizes are small, say 25-30 documents per cluster, where it tends to get stuck at a local maximum far away from the optimal solution. In this paper, we present a local search procedure, which we call 'first-variation\" that refines a given clustering by incrementally moving data points between clusters, thus achieving a higher objective function value. An enhancement of first variation allows a chain of such moves in a Kernighan-Lin fashion and leads to a better local maximum. Combining the enhanced first-variation with spherical k-means yields a powerful \"ping-pong\" strategy that often qualitatively improves k-means clustering and is computationally efficient. We present several experimental results to highlight the improvement achieved by our proposed algorithm in clustering high-dimensional and sparse text data.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"155","resultStr":"{\"title\":\"Iterative clustering of high dimensional text data augmented by local search\",\"authors\":\"I. Dhillon, Yuqiang Guan, J. Kogan\",\"doi\":\"10.1109/ICDM.2002.1183895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The k-means algorithm with cosine similarity, also known as the spherical k-means algorithm, is a popular method for clustering document collections. However spherical k-means can often yield qualitatively poor results, especially when cluster sizes are small, say 25-30 documents per cluster, where it tends to get stuck at a local maximum far away from the optimal solution. In this paper, we present a local search procedure, which we call 'first-variation\\\" that refines a given clustering by incrementally moving data points between clusters, thus achieving a higher objective function value. An enhancement of first variation allows a chain of such moves in a Kernighan-Lin fashion and leads to a better local maximum. Combining the enhanced first-variation with spherical k-means yields a powerful \\\"ping-pong\\\" strategy that often qualitatively improves k-means clustering and is computationally efficient. We present several experimental results to highlight the improvement achieved by our proposed algorithm in clustering high-dimensional and sparse text data.\",\"PeriodicalId\":405340,\"journal\":{\"name\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"155\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 IEEE International Conference on Data Mining, 2002. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2002.1183895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iterative clustering of high dimensional text data augmented by local search
The k-means algorithm with cosine similarity, also known as the spherical k-means algorithm, is a popular method for clustering document collections. However spherical k-means can often yield qualitatively poor results, especially when cluster sizes are small, say 25-30 documents per cluster, where it tends to get stuck at a local maximum far away from the optimal solution. In this paper, we present a local search procedure, which we call 'first-variation" that refines a given clustering by incrementally moving data points between clusters, thus achieving a higher objective function value. An enhancement of first variation allows a chain of such moves in a Kernighan-Lin fashion and leads to a better local maximum. Combining the enhanced first-variation with spherical k-means yields a powerful "ping-pong" strategy that often qualitatively improves k-means clustering and is computationally efficient. We present several experimental results to highlight the improvement achieved by our proposed algorithm in clustering high-dimensional and sparse text data.