基于内容的视频复制检测新框架

Hui Zhang, Zhicheng Zhao, A. Cai, Xiaohui Xie
{"title":"基于内容的视频复制检测新框架","authors":"Hui Zhang, Zhicheng Zhao, A. Cai, Xiaohui Xie","doi":"10.1109/ICNIDC.2010.5657881","DOIUrl":null,"url":null,"abstract":"Content-based copy detection (CBCD) recently has appeared a promising technique for video monitoring and copyright protection. In this paper, a novel framework for CBCD is proposed. Robust global features and local Speeded Up Robust Features (SURF) are first combined to describe video contents, and the density sampling method is proposed to improve the generation of visual codebook. Secondly, Smith-Waterman algorithm is introduced to find the similar video segments, meanwhile, a video matching method based on visual codebook is proposed to calculate the similarity of copy videos. Finally, a hierarchical fusion scheme is used to refine the detection results. Experiments on TRECVID dataset show that the proposed framework gives better results than the average results of CBCD task in TRECVID 2008.","PeriodicalId":348778,"journal":{"name":"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A novel framework for content-based video copy detection\",\"authors\":\"Hui Zhang, Zhicheng Zhao, A. Cai, Xiaohui Xie\",\"doi\":\"10.1109/ICNIDC.2010.5657881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Content-based copy detection (CBCD) recently has appeared a promising technique for video monitoring and copyright protection. In this paper, a novel framework for CBCD is proposed. Robust global features and local Speeded Up Robust Features (SURF) are first combined to describe video contents, and the density sampling method is proposed to improve the generation of visual codebook. Secondly, Smith-Waterman algorithm is introduced to find the similar video segments, meanwhile, a video matching method based on visual codebook is proposed to calculate the similarity of copy videos. Finally, a hierarchical fusion scheme is used to refine the detection results. Experiments on TRECVID dataset show that the proposed framework gives better results than the average results of CBCD task in TRECVID 2008.\",\"PeriodicalId\":348778,\"journal\":{\"name\":\"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIDC.2010.5657881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd IEEE InternationalConference on Network Infrastructure and Digital Content","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2010.5657881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于内容的拷贝检测(CBCD)是近年来出现的一种很有前途的视频监控和版权保护技术。本文提出了一种新的CBCD框架。首先结合鲁棒全局特征和局部加速鲁棒特征(SURF)来描述视频内容,并提出密度采样方法来改进视觉码本的生成。其次,引入Smith-Waterman算法寻找相似视频片段,同时提出了一种基于视觉码本的视频匹配方法来计算复制视频的相似度。最后,采用层次融合方案对检测结果进行细化。在TRECVID数据集上的实验表明,该框架的结果优于TRECVID 2008中CBCD任务的平均结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel framework for content-based video copy detection
Content-based copy detection (CBCD) recently has appeared a promising technique for video monitoring and copyright protection. In this paper, a novel framework for CBCD is proposed. Robust global features and local Speeded Up Robust Features (SURF) are first combined to describe video contents, and the density sampling method is proposed to improve the generation of visual codebook. Secondly, Smith-Waterman algorithm is introduced to find the similar video segments, meanwhile, a video matching method based on visual codebook is proposed to calculate the similarity of copy videos. Finally, a hierarchical fusion scheme is used to refine the detection results. Experiments on TRECVID dataset show that the proposed framework gives better results than the average results of CBCD task in TRECVID 2008.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信