使用全卷积神经网络分割核心图像

S. Fazekas, S. Obrochta, Tatsuhiko Sato, A. Yamamura
{"title":"使用全卷积神经网络分割核心图像","authors":"S. Fazekas, S. Obrochta, Tatsuhiko Sato, A. Yamamura","doi":"10.1109/ICITEED.2017.8250490","DOIUrl":null,"url":null,"abstract":"As a first step in building a toolkit for the computer analysis of images of sea floor sediment cores, we introduce a technique to automate a time consuming manual phase of said analysis. The retrieved cores contain artifacts, e.g., induced by the extraction itself, the removal of which improves the efficiency of environmental reconstruction. From a computer vision perspective, the task of identifying those artifacts is an image segmentation problem. The method we describe as a solution uses the recently introduced fully convolutional neural networks (FCN), which have been shown to be very efficient in segmenting images.","PeriodicalId":267403,"journal":{"name":"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Segmentation of coring images using fully convolutional neural networks\",\"authors\":\"S. Fazekas, S. Obrochta, Tatsuhiko Sato, A. Yamamura\",\"doi\":\"10.1109/ICITEED.2017.8250490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a first step in building a toolkit for the computer analysis of images of sea floor sediment cores, we introduce a technique to automate a time consuming manual phase of said analysis. The retrieved cores contain artifacts, e.g., induced by the extraction itself, the removal of which improves the efficiency of environmental reconstruction. From a computer vision perspective, the task of identifying those artifacts is an image segmentation problem. The method we describe as a solution uses the recently introduced fully convolutional neural networks (FCN), which have been shown to be very efficient in segmenting images.\",\"PeriodicalId\":267403,\"journal\":{\"name\":\"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2017.8250490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2017.8250490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

作为构建海底沉积物岩心图像计算机分析工具包的第一步,我们介绍了一种技术来自动化耗时的人工分析阶段。提取的岩心包含伪影,例如由提取本身引起的伪影,去除这些伪影可提高环境重建的效率。从计算机视觉的角度来看,识别这些伪影的任务是一个图像分割问题。我们描述的解决方案使用了最近引入的全卷积神经网络(FCN),它在分割图像方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Segmentation of coring images using fully convolutional neural networks
As a first step in building a toolkit for the computer analysis of images of sea floor sediment cores, we introduce a technique to automate a time consuming manual phase of said analysis. The retrieved cores contain artifacts, e.g., induced by the extraction itself, the removal of which improves the efficiency of environmental reconstruction. From a computer vision perspective, the task of identifying those artifacts is an image segmentation problem. The method we describe as a solution uses the recently introduced fully convolutional neural networks (FCN), which have been shown to be very efficient in segmenting images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信