利用N-Grams模型和强化学习在搜索引擎中查找相关文档

Amine El Hadi, Youness Madani, R. Ayachi, M. Erritali
{"title":"利用N-Grams模型和强化学习在搜索引擎中查找相关文档","authors":"Amine El Hadi, Youness Madani, R. Ayachi, M. Erritali","doi":"10.4018/jitr.299930","DOIUrl":null,"url":null,"abstract":"The field of information retrieval (IR) is an important area in computer science, this domain helps us to find information that we are interested in from an important volume of information. A search engine is the best example of the application of information retrieval to get the most relevant results. In this paper, we propose a new recommendation approach for recommending relevant documents to a search engine’s users. In this work, we proposed a new approach for calculating the similarity between a user query and a list of documents in a search engine. The proposed method uses a new reinforcement learning algorithm based on n-grams model (i.e., a sub-sequence of n constructed elements from a given sequence) and a similarity measure. Results show that our method outperforms some methods from the literature with a high value of accuracy.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"14 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Relevant Documents in a Search Engine Using N-Grams Model and Reinforcement Learning\",\"authors\":\"Amine El Hadi, Youness Madani, R. Ayachi, M. Erritali\",\"doi\":\"10.4018/jitr.299930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The field of information retrieval (IR) is an important area in computer science, this domain helps us to find information that we are interested in from an important volume of information. A search engine is the best example of the application of information retrieval to get the most relevant results. In this paper, we propose a new recommendation approach for recommending relevant documents to a search engine’s users. In this work, we proposed a new approach for calculating the similarity between a user query and a list of documents in a search engine. The proposed method uses a new reinforcement learning algorithm based on n-grams model (i.e., a sub-sequence of n constructed elements from a given sequence) and a similarity measure. Results show that our method outperforms some methods from the literature with a high value of accuracy.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"14 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/jitr.299930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/jitr.299930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息检索(information retrieval, IR)是计算机科学中的一个重要领域,它帮助我们从大量的信息中找到我们感兴趣的信息。搜索引擎是应用信息检索来获得最相关结果的最好例子。在本文中,我们提出了一种新的推荐方法,用于向搜索引擎用户推荐相关文档。在这项工作中,我们提出了一种新的方法来计算用户查询和搜索引擎中文档列表之间的相似性。该方法采用了一种新的基于n-grams模型(即从给定序列中构造n个元素的子序列)和相似性度量的强化学习算法。结果表明,该方法优于文献中的一些方法,具有较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Relevant Documents in a Search Engine Using N-Grams Model and Reinforcement Learning
The field of information retrieval (IR) is an important area in computer science, this domain helps us to find information that we are interested in from an important volume of information. A search engine is the best example of the application of information retrieval to get the most relevant results. In this paper, we propose a new recommendation approach for recommending relevant documents to a search engine’s users. In this work, we proposed a new approach for calculating the similarity between a user query and a list of documents in a search engine. The proposed method uses a new reinforcement learning algorithm based on n-grams model (i.e., a sub-sequence of n constructed elements from a given sequence) and a similarity measure. Results show that our method outperforms some methods from the literature with a high value of accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信