Frank M. Hafner, Matthias Zeller, Mark Schutera, Jochen Abhau, Julian F. P. Kooij
{"title":"主干分析:从CNN推理延迟到计算平台的结构化洞察","authors":"Frank M. Hafner, Matthias Zeller, Mark Schutera, Jochen Abhau, Julian F. P. Kooij","doi":"10.1109/iv51971.2022.9827260","DOIUrl":null,"url":null,"abstract":"Customization of a convolutional neural network (CNN) to a specific compute platform involves finding an optimal pareto state between computational complexity of the CNN and resulting throughput in operations per second on the compute platform. However, existing inference performance benchmarks compare complete backbones that entail many differences between their CNN configurations, which do not provide insights in how fine-grade layer design choices affect this balance.We present BackboneAnalysis, a methodology for extracting structured insights into the trade-off for a chosen target compute platform. Within a one-factor-at-a-time analysis setup, CNN architectures are systematically varied and evaluated based on throughput and latency measurements irrespective of model accuracy. Thereby, we investigate the configuration factors input shape, batch size, kernel size and convolutional layer type.In our experiments, we deploy BackboneAnalysis on a Xavier iGPU and a Coral Edge TPU accelerator. The analysis reveals that the general assumption from optimal Roofline performance that higher operation density in CNNs leads to higher throughput does not always hold. These results highlight the importance for a neural network architect to be aware of platform-specific latency and throughput behavior in order to derive sensible configuration decisions for a custom CNN.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"BackboneAnalysis: Structured Insights into Compute Platforms from CNN Inference Latency\",\"authors\":\"Frank M. Hafner, Matthias Zeller, Mark Schutera, Jochen Abhau, Julian F. P. Kooij\",\"doi\":\"10.1109/iv51971.2022.9827260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Customization of a convolutional neural network (CNN) to a specific compute platform involves finding an optimal pareto state between computational complexity of the CNN and resulting throughput in operations per second on the compute platform. However, existing inference performance benchmarks compare complete backbones that entail many differences between their CNN configurations, which do not provide insights in how fine-grade layer design choices affect this balance.We present BackboneAnalysis, a methodology for extracting structured insights into the trade-off for a chosen target compute platform. Within a one-factor-at-a-time analysis setup, CNN architectures are systematically varied and evaluated based on throughput and latency measurements irrespective of model accuracy. Thereby, we investigate the configuration factors input shape, batch size, kernel size and convolutional layer type.In our experiments, we deploy BackboneAnalysis on a Xavier iGPU and a Coral Edge TPU accelerator. The analysis reveals that the general assumption from optimal Roofline performance that higher operation density in CNNs leads to higher throughput does not always hold. These results highlight the importance for a neural network architect to be aware of platform-specific latency and throughput behavior in order to derive sensible configuration decisions for a custom CNN.\",\"PeriodicalId\":184622,\"journal\":{\"name\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iv51971.2022.9827260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iv51971.2022.9827260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BackboneAnalysis: Structured Insights into Compute Platforms from CNN Inference Latency
Customization of a convolutional neural network (CNN) to a specific compute platform involves finding an optimal pareto state between computational complexity of the CNN and resulting throughput in operations per second on the compute platform. However, existing inference performance benchmarks compare complete backbones that entail many differences between their CNN configurations, which do not provide insights in how fine-grade layer design choices affect this balance.We present BackboneAnalysis, a methodology for extracting structured insights into the trade-off for a chosen target compute platform. Within a one-factor-at-a-time analysis setup, CNN architectures are systematically varied and evaluated based on throughput and latency measurements irrespective of model accuracy. Thereby, we investigate the configuration factors input shape, batch size, kernel size and convolutional layer type.In our experiments, we deploy BackboneAnalysis on a Xavier iGPU and a Coral Edge TPU accelerator. The analysis reveals that the general assumption from optimal Roofline performance that higher operation density in CNNs leads to higher throughput does not always hold. These results highlight the importance for a neural network architect to be aware of platform-specific latency and throughput behavior in order to derive sensible configuration decisions for a custom CNN.