加速基于sat的控制/数据流图调度

S. Memik, F. Fallah
{"title":"加速基于sat的控制/数据流图调度","authors":"S. Memik, F. Fallah","doi":"10.1109/ICCD.2002.1106801","DOIUrl":null,"url":null,"abstract":"In this paper we present a satisfiability-based approach to the scheduling problem in high-level synthesis. We formulate the resource constrained scheduling as a satisfiability (SAT) problem. We present experimental results on the performance of the state-of-the-art SAT solver Chaff, and demonstrate techniques to reduce the SAT problem size by applying bounding techniques on the scheduling problem. In addition, we demonstrate the use of transformations on control data flow graphs such that the same lower bound techniques can operate on them as well. Our experiments show that Chaff is able to outperform the integer linear program (ILP) solver CPLEX in terms of CPU time by as much as 59 fold. Finally, we conclude that the satisfiability-based approach is a promising alternative for obtaining optimal solutions to NP-complete scheduling problem instances.","PeriodicalId":164768,"journal":{"name":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","volume":"94 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Accelerated SAT-based scheduling of control/data flow graphs\",\"authors\":\"S. Memik, F. Fallah\",\"doi\":\"10.1109/ICCD.2002.1106801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present a satisfiability-based approach to the scheduling problem in high-level synthesis. We formulate the resource constrained scheduling as a satisfiability (SAT) problem. We present experimental results on the performance of the state-of-the-art SAT solver Chaff, and demonstrate techniques to reduce the SAT problem size by applying bounding techniques on the scheduling problem. In addition, we demonstrate the use of transformations on control data flow graphs such that the same lower bound techniques can operate on them as well. Our experiments show that Chaff is able to outperform the integer linear program (ILP) solver CPLEX in terms of CPU time by as much as 59 fold. Finally, we conclude that the satisfiability-based approach is a promising alternative for obtaining optimal solutions to NP-complete scheduling problem instances.\",\"PeriodicalId\":164768,\"journal\":{\"name\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"volume\":\"94 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD.2002.1106801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Conference on Computer Design: VLSI in Computers and Processors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2002.1106801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文提出了一种基于可满足性的高级综合调度问题求解方法。我们将资源约束调度表述为可满足性问题。我们展示了最先进的SAT求解器Chaff性能的实验结果,并演示了通过在调度问题上应用边界技术来减少SAT问题大小的技术。此外,我们还演示了在控制数据流图上使用转换,以便相同的下界技术也可以对它们进行操作。我们的实验表明,在CPU时间方面,Chaff能够优于整数线性规划(ILP)求解器CPLEX多达59倍。最后,我们得出结论,基于满意度的方法是求解np -完全调度问题实例最优解的一种有希望的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerated SAT-based scheduling of control/data flow graphs
In this paper we present a satisfiability-based approach to the scheduling problem in high-level synthesis. We formulate the resource constrained scheduling as a satisfiability (SAT) problem. We present experimental results on the performance of the state-of-the-art SAT solver Chaff, and demonstrate techniques to reduce the SAT problem size by applying bounding techniques on the scheduling problem. In addition, we demonstrate the use of transformations on control data flow graphs such that the same lower bound techniques can operate on them as well. Our experiments show that Chaff is able to outperform the integer linear program (ILP) solver CPLEX in terms of CPU time by as much as 59 fold. Finally, we conclude that the satisfiability-based approach is a promising alternative for obtaining optimal solutions to NP-complete scheduling problem instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信