SRCB提交的2020年语音转换挑战赛

Qiuyue Ma, Ruolan Liu, Xue Wen, Chunhui Lu, Xiao Chen
{"title":"SRCB提交的2020年语音转换挑战赛","authors":"Qiuyue Ma, Ruolan Liu, Xue Wen, Chunhui Lu, Xiao Chen","doi":"10.21437/vcc_bc.2020-18","DOIUrl":null,"url":null,"abstract":"This paper presents the intra-lingual and cross-lingual voice conversion system for Voice Conversion Challenge 2020(VCC 2020). Voice conversion (VC) modifies a source speaker’s speech so that the result sounds like a target speaker. This becomes particularly difficult when source and target speakers speak different languages. In this work we focus on building a voice conversion system achieving consistent improvements in accent and intelligibility evaluations. Our voice conversion system is constituted by a bilingual phoneme recognition based speech representation module, a neural network based speech generation module and a neural vocoder. More concretely, we extract general phonation from the source speakers' speeches of different languages, and improve the sound quality by optimizing the speech synthesis module and adding a noise suppression post-process module to the vocoder. This framework ensures high intelligible and high natural speech, which is very close to human quality (MOS=4.17 rank 2 in Task 1, MOS=4.13 rank 2 in Task 2).","PeriodicalId":355114,"journal":{"name":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Submission from SRCB for Voice Conversion Challenge 2020\",\"authors\":\"Qiuyue Ma, Ruolan Liu, Xue Wen, Chunhui Lu, Xiao Chen\",\"doi\":\"10.21437/vcc_bc.2020-18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the intra-lingual and cross-lingual voice conversion system for Voice Conversion Challenge 2020(VCC 2020). Voice conversion (VC) modifies a source speaker’s speech so that the result sounds like a target speaker. This becomes particularly difficult when source and target speakers speak different languages. In this work we focus on building a voice conversion system achieving consistent improvements in accent and intelligibility evaluations. Our voice conversion system is constituted by a bilingual phoneme recognition based speech representation module, a neural network based speech generation module and a neural vocoder. More concretely, we extract general phonation from the source speakers' speeches of different languages, and improve the sound quality by optimizing the speech synthesis module and adding a noise suppression post-process module to the vocoder. This framework ensures high intelligible and high natural speech, which is very close to human quality (MOS=4.17 rank 2 in Task 1, MOS=4.13 rank 2 in Task 2).\",\"PeriodicalId\":355114,\"journal\":{\"name\":\"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/vcc_bc.2020-18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joint Workshop for the Blizzard Challenge and Voice Conversion Challenge 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/vcc_bc.2020-18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文介绍了2020语音转换挑战赛(VCC 2020)的语内和跨语语音转换系统。语音转换(VC)是对源说话者的语音进行修改,使其听起来像目标说话者。当源语者和目标语者说不同的语言时,这变得尤其困难。在这项工作中,我们专注于建立一个语音转换系统,以实现在口音和可理解性评估方面的持续改进。我们的语音转换系统由基于双语音素识别的语音表示模块、基于神经网络的语音生成模块和神经声码器组成。更具体地说,我们从不同语言的源说话人的语音中提取出一般的发音,并通过优化语音合成模块和在声码器中增加噪声抑制后处理模块来提高音质。该框架确保了高可理解性和高度自然的语音,非常接近人类的质量(任务1中MOS=4.17排名2,任务2中MOS=4.13排名2)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Submission from SRCB for Voice Conversion Challenge 2020
This paper presents the intra-lingual and cross-lingual voice conversion system for Voice Conversion Challenge 2020(VCC 2020). Voice conversion (VC) modifies a source speaker’s speech so that the result sounds like a target speaker. This becomes particularly difficult when source and target speakers speak different languages. In this work we focus on building a voice conversion system achieving consistent improvements in accent and intelligibility evaluations. Our voice conversion system is constituted by a bilingual phoneme recognition based speech representation module, a neural network based speech generation module and a neural vocoder. More concretely, we extract general phonation from the source speakers' speeches of different languages, and improve the sound quality by optimizing the speech synthesis module and adding a noise suppression post-process module to the vocoder. This framework ensures high intelligible and high natural speech, which is very close to human quality (MOS=4.17 rank 2 in Task 1, MOS=4.13 rank 2 in Task 2).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信