基于神经网络的远程机器人工具/负载抓取故障检测

Sewoong Kim, W. Hamel
{"title":"基于神经网络的远程机器人工具/负载抓取故障检测","authors":"Sewoong Kim, W. Hamel","doi":"10.1109/ICAR.2005.1507508","DOIUrl":null,"url":null,"abstract":"For the safe and reliable execution of tasks, the tool grasping conditions of the manipulator must be checked to determine whether the tool has been grasped in the desired manner in real time. Especially in the case of telerobotics, grasping errors are critical to the completion of tasks since the human operator cannot access the hazardous and remote work environment. This paper proposes a time-delayed neural network to identify the load of manipulators in real time. The developed scheme is applied to a two-link manipulator, and the simulation results show the feasibility of the approach for grasping fault detection","PeriodicalId":428475,"journal":{"name":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault detection of tool/load grasping for telerobotics using neural networks\",\"authors\":\"Sewoong Kim, W. Hamel\",\"doi\":\"10.1109/ICAR.2005.1507508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the safe and reliable execution of tasks, the tool grasping conditions of the manipulator must be checked to determine whether the tool has been grasped in the desired manner in real time. Especially in the case of telerobotics, grasping errors are critical to the completion of tasks since the human operator cannot access the hazardous and remote work environment. This paper proposes a time-delayed neural network to identify the load of manipulators in real time. The developed scheme is applied to a two-link manipulator, and the simulation results show the feasibility of the approach for grasping fault detection\",\"PeriodicalId\":428475,\"journal\":{\"name\":\"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR.2005.1507508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICAR '05. Proceedings., 12th International Conference on Advanced Robotics, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR.2005.1507508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了安全可靠地执行任务,必须对机械手的抓刀条件进行检查,以实时确定刀具是否以期望的方式被抓取。特别是在远程机器人的情况下,由于人类操作员无法进入危险和远程的工作环境,抓取误差对任务的完成至关重要。本文提出了一种实时识别机械臂载荷的时滞神经网络。将该方法应用于某双连杆机械手,仿真结果表明了该方法用于抓取故障检测的可行性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault detection of tool/load grasping for telerobotics using neural networks
For the safe and reliable execution of tasks, the tool grasping conditions of the manipulator must be checked to determine whether the tool has been grasped in the desired manner in real time. Especially in the case of telerobotics, grasping errors are critical to the completion of tasks since the human operator cannot access the hazardous and remote work environment. This paper proposes a time-delayed neural network to identify the load of manipulators in real time. The developed scheme is applied to a two-link manipulator, and the simulation results show the feasibility of the approach for grasping fault detection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信