P. Manley, M. Segantini, Doğuşcan Ahiboz, M. Hammerschmidt, G. Arnaoutakis, Rowan W. MacQueen, S. Burger, C. Becker
{"title":"增强光子上转换的双层超表面","authors":"P. Manley, M. Segantini, Doğuşcan Ahiboz, M. Hammerschmidt, G. Arnaoutakis, Rowan W. MacQueen, S. Burger, C. Becker","doi":"10.1063/5.0040839","DOIUrl":null,"url":null,"abstract":"We present a double-layer dielectric metasurface obtained by stacking a silicon nanodisc array and a silicon photonic crystal slab with equal periodicity on top of each other. We focus on the investigation of electric near-field enhancement effects occurring at resonant excitation of the metasurface and study its optical properties numerically and experimentally. We find that the major difference in multi-layer metasurfaces when compared to conventional single-layer structures appears to be in Rayleigh-Wood anomalies: they are split into multiple different modes which are themselves spectrally broadened. As a proof of concept we cover a double-layer metasurface with a lanthanide-doped up-conversion particle layer and study its interaction with a 1550 nm photoexcitation. We observe a 2.7-fold enhancemed up-conversion photoluminescence by using the stacked metasurface instead of a planar substrate, although only around 1% of the up-conversion material is exposed to enhanced near-fields. Two mechanisms are identified explaining this behavior: First, enhanced near-fields when exciting the metasurface resonantly, and second, light trapping by total internal reflection in the particle layer when the metasurface redirects light into high-angle diffraction orders. These results pave the way for low-threshold and, in particular, broadband photon up-conversion in future solar energy and biosensing applications.","PeriodicalId":304443,"journal":{"name":"arXiv: Optics","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Double-layer metasurface for enhanced photon up-conversion\",\"authors\":\"P. Manley, M. Segantini, Doğuşcan Ahiboz, M. Hammerschmidt, G. Arnaoutakis, Rowan W. MacQueen, S. Burger, C. Becker\",\"doi\":\"10.1063/5.0040839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a double-layer dielectric metasurface obtained by stacking a silicon nanodisc array and a silicon photonic crystal slab with equal periodicity on top of each other. We focus on the investigation of electric near-field enhancement effects occurring at resonant excitation of the metasurface and study its optical properties numerically and experimentally. We find that the major difference in multi-layer metasurfaces when compared to conventional single-layer structures appears to be in Rayleigh-Wood anomalies: they are split into multiple different modes which are themselves spectrally broadened. As a proof of concept we cover a double-layer metasurface with a lanthanide-doped up-conversion particle layer and study its interaction with a 1550 nm photoexcitation. We observe a 2.7-fold enhancemed up-conversion photoluminescence by using the stacked metasurface instead of a planar substrate, although only around 1% of the up-conversion material is exposed to enhanced near-fields. Two mechanisms are identified explaining this behavior: First, enhanced near-fields when exciting the metasurface resonantly, and second, light trapping by total internal reflection in the particle layer when the metasurface redirects light into high-angle diffraction orders. These results pave the way for low-threshold and, in particular, broadband photon up-conversion in future solar energy and biosensing applications.\",\"PeriodicalId\":304443,\"journal\":{\"name\":\"arXiv: Optics\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0040839\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0040839","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Double-layer metasurface for enhanced photon up-conversion
We present a double-layer dielectric metasurface obtained by stacking a silicon nanodisc array and a silicon photonic crystal slab with equal periodicity on top of each other. We focus on the investigation of electric near-field enhancement effects occurring at resonant excitation of the metasurface and study its optical properties numerically and experimentally. We find that the major difference in multi-layer metasurfaces when compared to conventional single-layer structures appears to be in Rayleigh-Wood anomalies: they are split into multiple different modes which are themselves spectrally broadened. As a proof of concept we cover a double-layer metasurface with a lanthanide-doped up-conversion particle layer and study its interaction with a 1550 nm photoexcitation. We observe a 2.7-fold enhancemed up-conversion photoluminescence by using the stacked metasurface instead of a planar substrate, although only around 1% of the up-conversion material is exposed to enhanced near-fields. Two mechanisms are identified explaining this behavior: First, enhanced near-fields when exciting the metasurface resonantly, and second, light trapping by total internal reflection in the particle layer when the metasurface redirects light into high-angle diffraction orders. These results pave the way for low-threshold and, in particular, broadband photon up-conversion in future solar energy and biosensing applications.