基于残差可分卷积神经网络的汉字识别

Hao-ran Xiang, Jing Peng, Yi Ma, Yong He, Ze-zhong Zheng, Fan Mou, Jiang Li
{"title":"基于残差可分卷积神经网络的汉字识别","authors":"Hao-ran Xiang, Jing Peng, Yi Ma, Yong He, Ze-zhong Zheng, Fan Mou, Jiang Li","doi":"10.1109/ICCWAMTIP.2018.8632573","DOIUrl":null,"url":null,"abstract":"In this paper, we present an end-to-end deep learning system for Chinese character recognition. We applied the system to recognize ID card photographed by smart phone in natural environment. The quality of ID card images was affected by illumination and shadow. We developed a preprocessing procedure to enhance the images and then to detect and extract Chinese characters and numbers from the images. The end-to-end deep convolutional neural network (CNN)consists of deep separable convolutional (DSC)layers, batch normalization (BN)layers, ReLu activation layers and residual connections to mitigate over-fitting and gradient vanish. To train the network, we constructed a dataset containing the 3765 most frequent Chinese characters. We tested the proposed system on a self-constructed Chinese character dataset and achieved an accuracy of 92.73%.","PeriodicalId":117919,"journal":{"name":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chinese Character Recognition Based on Residual Separable Convolutional Neural Network\",\"authors\":\"Hao-ran Xiang, Jing Peng, Yi Ma, Yong He, Ze-zhong Zheng, Fan Mou, Jiang Li\",\"doi\":\"10.1109/ICCWAMTIP.2018.8632573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an end-to-end deep learning system for Chinese character recognition. We applied the system to recognize ID card photographed by smart phone in natural environment. The quality of ID card images was affected by illumination and shadow. We developed a preprocessing procedure to enhance the images and then to detect and extract Chinese characters and numbers from the images. The end-to-end deep convolutional neural network (CNN)consists of deep separable convolutional (DSC)layers, batch normalization (BN)layers, ReLu activation layers and residual connections to mitigate over-fitting and gradient vanish. To train the network, we constructed a dataset containing the 3765 most frequent Chinese characters. We tested the proposed system on a self-constructed Chinese character dataset and achieved an accuracy of 92.73%.\",\"PeriodicalId\":117919,\"journal\":{\"name\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCWAMTIP.2018.8632573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP.2018.8632573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个端到端中文字符识别深度学习系统。应用该系统对自然环境下智能手机拍摄的身份证进行识别。身份证图像的质量受光照和阴影的影响。我们开发了一个预处理程序来增强图像,然后从图像中检测和提取汉字和数字。端到端深度卷积神经网络(CNN)由深度可分离卷积(DSC)层、批归一化(BN)层、ReLu激活层和残余连接组成,以减轻过拟合和梯度消失。为了训练网络,我们构建了一个包含3765个最常见汉字的数据集。我们在一个自建的汉字数据集上测试了该系统,准确率达到了92.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese Character Recognition Based on Residual Separable Convolutional Neural Network
In this paper, we present an end-to-end deep learning system for Chinese character recognition. We applied the system to recognize ID card photographed by smart phone in natural environment. The quality of ID card images was affected by illumination and shadow. We developed a preprocessing procedure to enhance the images and then to detect and extract Chinese characters and numbers from the images. The end-to-end deep convolutional neural network (CNN)consists of deep separable convolutional (DSC)layers, batch normalization (BN)layers, ReLu activation layers and residual connections to mitigate over-fitting and gradient vanish. To train the network, we constructed a dataset containing the 3765 most frequent Chinese characters. We tested the proposed system on a self-constructed Chinese character dataset and achieved an accuracy of 92.73%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信