基于目标的高分辨率SAR图像城市变化检测

Osama Yousif, Y. Ban
{"title":"基于目标的高分辨率SAR图像城市变化检测","authors":"Osama Yousif, Y. Ban","doi":"10.1109/JURSE.2015.7120502","DOIUrl":null,"url":null,"abstract":"In this study, the unsupervised detection of urban changes, based on high-spatial resolution SAR imagery, is approached using the object-oriented paradigm. Multidate images segmentation strategy was adopted to avoid the creation of sliver polygon. Following segmentation, a change image was generated by comparing objects' mean intensities using a modified version of the traditional ratio operator. Three different unsupervised thresholding algorithms-that is, Kittler-Illingworth algorithm, Otsu method, and outlier detection technique-are used to threshold the change image and generate a binary change map. Two TerraSAR-X SAR images acquired over Shanghai in August, 2008, and September, 2011, were used to test the methods. The results indicate that, compared with pixel-based, the object-based approach helps in improving the quality of the produced change maps. The results also show that the three unsupervised thresholding algorithms performed equally well.","PeriodicalId":207233,"journal":{"name":"2015 Joint Urban Remote Sensing Event (JURSE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Object-based urban change detection using high resolution SAR images\",\"authors\":\"Osama Yousif, Y. Ban\",\"doi\":\"10.1109/JURSE.2015.7120502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the unsupervised detection of urban changes, based on high-spatial resolution SAR imagery, is approached using the object-oriented paradigm. Multidate images segmentation strategy was adopted to avoid the creation of sliver polygon. Following segmentation, a change image was generated by comparing objects' mean intensities using a modified version of the traditional ratio operator. Three different unsupervised thresholding algorithms-that is, Kittler-Illingworth algorithm, Otsu method, and outlier detection technique-are used to threshold the change image and generate a binary change map. Two TerraSAR-X SAR images acquired over Shanghai in August, 2008, and September, 2011, were used to test the methods. The results indicate that, compared with pixel-based, the object-based approach helps in improving the quality of the produced change maps. The results also show that the three unsupervised thresholding algorithms performed equally well.\",\"PeriodicalId\":207233,\"journal\":{\"name\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Joint Urban Remote Sensing Event (JURSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JURSE.2015.7120502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Joint Urban Remote Sensing Event (JURSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JURSE.2015.7120502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本研究中,采用面向对象的范式,基于高空间分辨率SAR图像,探讨了城市变化的无监督检测。采用多数据图像分割策略,避免了银多边形的产生。分割后,使用改进的传统比例算子,通过比较目标的平均强度生成变化图像。使用三种不同的无监督阈值算法(即Kittler-Illingworth算法、Otsu方法和离群值检测技术)对变化图像设置阈值并生成二值变化图。使用2008年8月和2011年9月在上海上空获得的两张TerraSAR-X SAR图像来测试这些方法。结果表明,与基于像素的方法相比,基于对象的方法有助于提高生成的变化图的质量。结果还表明,三种无监督阈值算法的性能都很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Object-based urban change detection using high resolution SAR images
In this study, the unsupervised detection of urban changes, based on high-spatial resolution SAR imagery, is approached using the object-oriented paradigm. Multidate images segmentation strategy was adopted to avoid the creation of sliver polygon. Following segmentation, a change image was generated by comparing objects' mean intensities using a modified version of the traditional ratio operator. Three different unsupervised thresholding algorithms-that is, Kittler-Illingworth algorithm, Otsu method, and outlier detection technique-are used to threshold the change image and generate a binary change map. Two TerraSAR-X SAR images acquired over Shanghai in August, 2008, and September, 2011, were used to test the methods. The results indicate that, compared with pixel-based, the object-based approach helps in improving the quality of the produced change maps. The results also show that the three unsupervised thresholding algorithms performed equally well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信