毫米波蜂窝网络的精确随机几何建模与分析

Wei Lu, M. Renzo
{"title":"毫米波蜂窝网络的精确随机几何建模与分析","authors":"Wei Lu, M. Renzo","doi":"10.1109/ICUWB.2015.7324419","DOIUrl":null,"url":null,"abstract":"By relying on a stochastic geometry abstraction modeling for the locations of the base stations and by considering an accurate channel model based on measurements, the author of [1] has recently proposed a tractable mathematical framework for evaluating coverage and rate of millimeter wave cellular networks. The approach proposed in [1] however, relies on a noise-limited approximation for millimeter wave cellular networks operation, which may not hold for all transmission parameters, especially for sub-gigahertz transmission bandwidths and for ultra-dense network deployments. In the present paper, the mathematical framework introduced in \\cite{MDR_mmWave} is generalized by proposing an approach that accounts for the other-cell interference and, thus, is applicable to any system setups. The accuracy of the proposed approach is validated with the aid of Monte Carlo simulations and a good accuracy is obtained, even for very dense cellular network deployments.","PeriodicalId":339208,"journal":{"name":"2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Accurate Stochastic Geometry Modeling and Analysis of mmWave Cellular Networks\",\"authors\":\"Wei Lu, M. Renzo\",\"doi\":\"10.1109/ICUWB.2015.7324419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By relying on a stochastic geometry abstraction modeling for the locations of the base stations and by considering an accurate channel model based on measurements, the author of [1] has recently proposed a tractable mathematical framework for evaluating coverage and rate of millimeter wave cellular networks. The approach proposed in [1] however, relies on a noise-limited approximation for millimeter wave cellular networks operation, which may not hold for all transmission parameters, especially for sub-gigahertz transmission bandwidths and for ultra-dense network deployments. In the present paper, the mathematical framework introduced in \\\\cite{MDR_mmWave} is generalized by proposing an approach that accounts for the other-cell interference and, thus, is applicable to any system setups. The accuracy of the proposed approach is validated with the aid of Monte Carlo simulations and a good accuracy is obtained, even for very dense cellular network deployments.\",\"PeriodicalId\":339208,\"journal\":{\"name\":\"2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUWB.2015.7324419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUWB.2015.7324419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

通过对基站位置的随机几何抽象建模,并考虑基于测量的精确信道模型,[1]的作者最近提出了一个易于处理的数学框架来评估毫米波蜂窝网络的覆盖率和速率。然而,[1]中提出的方法依赖于毫米波蜂窝网络运行的噪声限制近似,这可能不适用于所有传输参数,特别是对于亚千兆赫的传输带宽和超密集的网络部署。在本文中,通过提出一种考虑其他单元干扰的方法,推广了\cite{MDR_mmWave}中引入的数学框架,从而适用于任何系统设置。通过蒙特卡罗模拟验证了该方法的准确性,即使在非常密集的蜂窝网络部署中也获得了良好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accurate Stochastic Geometry Modeling and Analysis of mmWave Cellular Networks
By relying on a stochastic geometry abstraction modeling for the locations of the base stations and by considering an accurate channel model based on measurements, the author of [1] has recently proposed a tractable mathematical framework for evaluating coverage and rate of millimeter wave cellular networks. The approach proposed in [1] however, relies on a noise-limited approximation for millimeter wave cellular networks operation, which may not hold for all transmission parameters, especially for sub-gigahertz transmission bandwidths and for ultra-dense network deployments. In the present paper, the mathematical framework introduced in \cite{MDR_mmWave} is generalized by proposing an approach that accounts for the other-cell interference and, thus, is applicable to any system setups. The accuracy of the proposed approach is validated with the aid of Monte Carlo simulations and a good accuracy is obtained, even for very dense cellular network deployments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信