基于编译时污点语义提取和离线重放的混合模式信息流跟踪

Yu-Hsin Hung, Bing-Jhong Jheng, Hong-Wei Li, Wen-Yang Lai, S. Mallissery, Yu-Sung Wu
{"title":"基于编译时污点语义提取和离线重放的混合模式信息流跟踪","authors":"Yu-Hsin Hung, Bing-Jhong Jheng, Hong-Wei Li, Wen-Yang Lai, S. Mallissery, Yu-Sung Wu","doi":"10.1109/DSC49826.2021.9346239","DOIUrl":null,"url":null,"abstract":"Static information flow analysis (IFA) and dynamic information flow tracking (DIFT) have been widely employed in offline security analysis of computer programs. As security attacks become more sophisticated, there is a rising need for IFA and DIFT in production environment. However, existing systems usually deal with IFA and DIFT separately, and most DIFT systems incur significant performance overhead. We propose MIT to facilitate IFA and DIFT in online production environment. MIT offers mixed-mode information flow tracking at byte-granularity and incurs moderate runtime performance overhead. The core techniques consist of the extraction of taint semantics intermediate representation (TSIR) at compile-time and the decoupled execution of TSIR for information flow analysis. We conducted an extensive performance overhead evaluation on MIT to confirm its applicability in production environment. We also outline potential applications of MIT, including the implementation of data provenance checking and information flow based anomaly detection in real-world applications.","PeriodicalId":184504,"journal":{"name":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mixed-mode Information Flow Tracking with Compile-time Taint Semantics Extraction and Offline Replay\",\"authors\":\"Yu-Hsin Hung, Bing-Jhong Jheng, Hong-Wei Li, Wen-Yang Lai, S. Mallissery, Yu-Sung Wu\",\"doi\":\"10.1109/DSC49826.2021.9346239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static information flow analysis (IFA) and dynamic information flow tracking (DIFT) have been widely employed in offline security analysis of computer programs. As security attacks become more sophisticated, there is a rising need for IFA and DIFT in production environment. However, existing systems usually deal with IFA and DIFT separately, and most DIFT systems incur significant performance overhead. We propose MIT to facilitate IFA and DIFT in online production environment. MIT offers mixed-mode information flow tracking at byte-granularity and incurs moderate runtime performance overhead. The core techniques consist of the extraction of taint semantics intermediate representation (TSIR) at compile-time and the decoupled execution of TSIR for information flow analysis. We conducted an extensive performance overhead evaluation on MIT to confirm its applicability in production environment. We also outline potential applications of MIT, including the implementation of data provenance checking and information flow based anomaly detection in real-world applications.\",\"PeriodicalId\":184504,\"journal\":{\"name\":\"2021 IEEE Conference on Dependable and Secure Computing (DSC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Conference on Dependable and Secure Computing (DSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSC49826.2021.9346239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Dependable and Secure Computing (DSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSC49826.2021.9346239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

静态信息流分析(IFA)和动态信息流跟踪(DIFT)在计算机程序离线安全分析中得到了广泛的应用。随着安全攻击变得越来越复杂,在生产环境中对IFA和DIFT的需求越来越大。然而,现有的系统通常分别处理IFA和DIFT,并且大多数DIFT系统会产生显著的性能开销。我们建议MIT在在线生产环境中促进IFA和DIFT。MIT以字节粒度提供混合模式信息流跟踪,并产生适度的运行时性能开销。其核心技术包括编译时污损语义中间表示(TSIR)的提取和用于信息流分析的TSIR解耦执行。我们对MIT进行了广泛的性能开销评估,以确认其在生产环境中的适用性。我们还概述了MIT的潜在应用,包括在实际应用中实现数据来源检查和基于信息流的异常检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixed-mode Information Flow Tracking with Compile-time Taint Semantics Extraction and Offline Replay
Static information flow analysis (IFA) and dynamic information flow tracking (DIFT) have been widely employed in offline security analysis of computer programs. As security attacks become more sophisticated, there is a rising need for IFA and DIFT in production environment. However, existing systems usually deal with IFA and DIFT separately, and most DIFT systems incur significant performance overhead. We propose MIT to facilitate IFA and DIFT in online production environment. MIT offers mixed-mode information flow tracking at byte-granularity and incurs moderate runtime performance overhead. The core techniques consist of the extraction of taint semantics intermediate representation (TSIR) at compile-time and the decoupled execution of TSIR for information flow analysis. We conducted an extensive performance overhead evaluation on MIT to confirm its applicability in production environment. We also outline potential applications of MIT, including the implementation of data provenance checking and information flow based anomaly detection in real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信