广义距离函数的广义导数与广义最近点的存在性

Xianfa Luo, Jinsu He
{"title":"广义距离函数的广义导数与广义最近点的存在性","authors":"Xianfa Luo, Jinsu He","doi":"10.1109/ICMLC.2011.6016815","DOIUrl":null,"url":null,"abstract":"This note investigates the relationships between the generalized directional derivatives of the generalized distance function and the existence of the generalized nearest points in Banach spaces. It is proved that the generalized distance function associated with a closed bounded convex set having the Clark, Michel-Penot, Dini, or modified Dini derivative equals to 1 or −1 implies the existence of generalized nearest points. Also, new characterization theorems of (compact) locally uniformly sets are obtained.","PeriodicalId":228516,"journal":{"name":"2011 International Conference on Machine Learning and Cybernetics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generalized derivatives of generalized distance functions and the existence of generalized nearest points\",\"authors\":\"Xianfa Luo, Jinsu He\",\"doi\":\"10.1109/ICMLC.2011.6016815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note investigates the relationships between the generalized directional derivatives of the generalized distance function and the existence of the generalized nearest points in Banach spaces. It is proved that the generalized distance function associated with a closed bounded convex set having the Clark, Michel-Penot, Dini, or modified Dini derivative equals to 1 or −1 implies the existence of generalized nearest points. Also, new characterization theorems of (compact) locally uniformly sets are obtained.\",\"PeriodicalId\":228516,\"journal\":{\"name\":\"2011 International Conference on Machine Learning and Cybernetics\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2011.6016815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2011.6016815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了Banach空间中广义距离函数的广义方向导数与广义最近点的存在性之间的关系。证明了具有Clark、Michel-Penot、Dini或修正Dini导数为1或- 1的闭有界凸集的广义距离函数暗示了广义最近点的存在性。同时,得到了局部紧一致集的新的刻划定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generalized derivatives of generalized distance functions and the existence of generalized nearest points
This note investigates the relationships between the generalized directional derivatives of the generalized distance function and the existence of the generalized nearest points in Banach spaces. It is proved that the generalized distance function associated with a closed bounded convex set having the Clark, Michel-Penot, Dini, or modified Dini derivative equals to 1 or −1 implies the existence of generalized nearest points. Also, new characterization theorems of (compact) locally uniformly sets are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信