M. H. Moghadam, Mehrdad Saadatmand, Markus Borg, M. Bohlin, B. Lisper
{"title":"实时嵌入式系统中基于学习的响应时间分析:基于仿真的方法","authors":"M. H. Moghadam, Mehrdad Saadatmand, Markus Borg, M. Bohlin, B. Lisper","doi":"10.1145/3194095.3194097","DOIUrl":null,"url":null,"abstract":"Response time analysis is an essential task to verify the behavior of real-time systems. Several response time analysis methods have been proposed to address this challenge, particularly for real-time systems with different levels of complexity. Static analysis is a popular approach in this context, but its practical applicability is limited due to the high complexity of the industrial real-time systems, as well as many unpredictable runtime events in these systems. In this work-in-progress paper, we propose a simulation-based response time analysis approach using reinforcement learning to find the execution scenarios leading to the worst-case response time. The approach learns how to provide a practical estimation of the worst-case response time through simulating the program without performing static analysis. Our initial study suggests that the proposed approach could be applicable in the simulation environments of the industrial real-time control systems to provide a practical estimation of the execution scenarios leading to the worst-case response time.","PeriodicalId":103582,"journal":{"name":"2018 IEEE/ACM 1st International Workshop on Software Qualities and their Dependencies (SQUADE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Learning-Based Response Time Analysis in Real-Time Embedded Systems: A Simulation-Based Approach\",\"authors\":\"M. H. Moghadam, Mehrdad Saadatmand, Markus Borg, M. Bohlin, B. Lisper\",\"doi\":\"10.1145/3194095.3194097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Response time analysis is an essential task to verify the behavior of real-time systems. Several response time analysis methods have been proposed to address this challenge, particularly for real-time systems with different levels of complexity. Static analysis is a popular approach in this context, but its practical applicability is limited due to the high complexity of the industrial real-time systems, as well as many unpredictable runtime events in these systems. In this work-in-progress paper, we propose a simulation-based response time analysis approach using reinforcement learning to find the execution scenarios leading to the worst-case response time. The approach learns how to provide a practical estimation of the worst-case response time through simulating the program without performing static analysis. Our initial study suggests that the proposed approach could be applicable in the simulation environments of the industrial real-time control systems to provide a practical estimation of the execution scenarios leading to the worst-case response time.\",\"PeriodicalId\":103582,\"journal\":{\"name\":\"2018 IEEE/ACM 1st International Workshop on Software Qualities and their Dependencies (SQUADE)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 1st International Workshop on Software Qualities and their Dependencies (SQUADE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3194095.3194097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 1st International Workshop on Software Qualities and their Dependencies (SQUADE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194095.3194097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning-Based Response Time Analysis in Real-Time Embedded Systems: A Simulation-Based Approach
Response time analysis is an essential task to verify the behavior of real-time systems. Several response time analysis methods have been proposed to address this challenge, particularly for real-time systems with different levels of complexity. Static analysis is a popular approach in this context, but its practical applicability is limited due to the high complexity of the industrial real-time systems, as well as many unpredictable runtime events in these systems. In this work-in-progress paper, we propose a simulation-based response time analysis approach using reinforcement learning to find the execution scenarios leading to the worst-case response time. The approach learns how to provide a practical estimation of the worst-case response time through simulating the program without performing static analysis. Our initial study suggests that the proposed approach could be applicable in the simulation environments of the industrial real-time control systems to provide a practical estimation of the execution scenarios leading to the worst-case response time.