{"title":"基频检测方法的比较,并介绍了音乐应用中简单的自修复算法","authors":"M. Stanek, Tomas Smatana","doi":"10.1109/RADIOELEK.2015.7129013","DOIUrl":null,"url":null,"abstract":"This paper presents the comparison of five commonly used methods for fundamental frequency detection in speech signal, exactly in vocal and melodic instrument signals. The efficiency of chosen method is verified on known set of musical notes performed by bass clarinet. The highest efficiency in fundamental frequency detection was reached by AutoCorrelation (ACF) and Modified AutoCorrelation (MACF) functions. Self-repairing algorithm is also described in this paper and it can be defined as a useful tool for correction of inaccurately found fundamental frequencies related to relevant musical notes. For correct pitch detection and self-repairing algorithm function, as the most appropriate segment length can be set as a half value of the shortest known musical note in analysed signal. Due to high efficiency and low computational preformance, the combination of ACF, MACF respectively, with self-repairing algorithm supplemented by some fundamental frequency changing method can be used as an effective almost real-time tool for tuning and other musical applications.","PeriodicalId":193275,"journal":{"name":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of fundamental frequency detection methods and introducing simple self-repairing algorithm for musical applications\",\"authors\":\"M. Stanek, Tomas Smatana\",\"doi\":\"10.1109/RADIOELEK.2015.7129013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the comparison of five commonly used methods for fundamental frequency detection in speech signal, exactly in vocal and melodic instrument signals. The efficiency of chosen method is verified on known set of musical notes performed by bass clarinet. The highest efficiency in fundamental frequency detection was reached by AutoCorrelation (ACF) and Modified AutoCorrelation (MACF) functions. Self-repairing algorithm is also described in this paper and it can be defined as a useful tool for correction of inaccurately found fundamental frequencies related to relevant musical notes. For correct pitch detection and self-repairing algorithm function, as the most appropriate segment length can be set as a half value of the shortest known musical note in analysed signal. Due to high efficiency and low computational preformance, the combination of ACF, MACF respectively, with self-repairing algorithm supplemented by some fundamental frequency changing method can be used as an effective almost real-time tool for tuning and other musical applications.\",\"PeriodicalId\":193275,\"journal\":{\"name\":\"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADIOELEK.2015.7129013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 25th International Conference Radioelektronika (RADIOELEKTRONIKA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADIOELEK.2015.7129013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of fundamental frequency detection methods and introducing simple self-repairing algorithm for musical applications
This paper presents the comparison of five commonly used methods for fundamental frequency detection in speech signal, exactly in vocal and melodic instrument signals. The efficiency of chosen method is verified on known set of musical notes performed by bass clarinet. The highest efficiency in fundamental frequency detection was reached by AutoCorrelation (ACF) and Modified AutoCorrelation (MACF) functions. Self-repairing algorithm is also described in this paper and it can be defined as a useful tool for correction of inaccurately found fundamental frequencies related to relevant musical notes. For correct pitch detection and self-repairing algorithm function, as the most appropriate segment length can be set as a half value of the shortest known musical note in analysed signal. Due to high efficiency and low computational preformance, the combination of ACF, MACF respectively, with self-repairing algorithm supplemented by some fundamental frequency changing method can be used as an effective almost real-time tool for tuning and other musical applications.