冲积图复杂性的贝叶斯建模

Anjana Arunkumar, Shashank Ginjpalli, Chris Bryan
{"title":"冲积图复杂性的贝叶斯建模","authors":"Anjana Arunkumar, Shashank Ginjpalli, Chris Bryan","doi":"10.1109/VIS49827.2021.9623282","DOIUrl":null,"url":null,"abstract":"Alluvial diagrams are a popular technique for visualizing flow and relational data. However, successfully reading and interpreting the data shown in an alluvial diagram is likely influenced by factors such as data volume, complexity, and chart layout. To understand how alluvial diagram consumption is impacted by its visual features, we conduct two crowdsourced user studies with a set of alluvial diagrams of varying complexity, and examine (i) participant performance on analysis tasks, and (ii) the perceived complexity of the charts. Using the study results, we employ Bayesian modelling to predict participant classification of diagram complexity. We find that, while multiple visual features are important in contributing to alluvial diagram complexity, interestingly the importance of features seems to depend on the type of complexity being modeled, i.e. task complexity vs. perceived complexity.","PeriodicalId":387572,"journal":{"name":"2021 IEEE Visualization Conference (VIS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Bayesian Modelling of Alluvial Diagram Complexity\",\"authors\":\"Anjana Arunkumar, Shashank Ginjpalli, Chris Bryan\",\"doi\":\"10.1109/VIS49827.2021.9623282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Alluvial diagrams are a popular technique for visualizing flow and relational data. However, successfully reading and interpreting the data shown in an alluvial diagram is likely influenced by factors such as data volume, complexity, and chart layout. To understand how alluvial diagram consumption is impacted by its visual features, we conduct two crowdsourced user studies with a set of alluvial diagrams of varying complexity, and examine (i) participant performance on analysis tasks, and (ii) the perceived complexity of the charts. Using the study results, we employ Bayesian modelling to predict participant classification of diagram complexity. We find that, while multiple visual features are important in contributing to alluvial diagram complexity, interestingly the importance of features seems to depend on the type of complexity being modeled, i.e. task complexity vs. perceived complexity.\",\"PeriodicalId\":387572,\"journal\":{\"name\":\"2021 IEEE Visualization Conference (VIS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Visualization Conference (VIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VIS49827.2021.9623282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Visualization Conference (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS49827.2021.9623282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

冲积图是一种流行的水流和关系数据可视化技术。然而,成功地读取和解释冲积图中显示的数据可能受到数据量、复杂性和图表布局等因素的影响。为了了解冲积图的视觉特征是如何影响冲积图消费的,我们对一组不同复杂性的冲积图进行了两次众包用户研究,并检查了(i)参与者在分析任务中的表现,以及(ii)图表的感知复杂性。根据研究结果,我们采用贝叶斯模型来预测图复杂度的参与者分类。我们发现,虽然多种视觉特征对冲积图复杂性的贡献很重要,但有趣的是,特征的重要性似乎取决于建模的复杂性类型,即任务复杂性与感知复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Modelling of Alluvial Diagram Complexity
Alluvial diagrams are a popular technique for visualizing flow and relational data. However, successfully reading and interpreting the data shown in an alluvial diagram is likely influenced by factors such as data volume, complexity, and chart layout. To understand how alluvial diagram consumption is impacted by its visual features, we conduct two crowdsourced user studies with a set of alluvial diagrams of varying complexity, and examine (i) participant performance on analysis tasks, and (ii) the perceived complexity of the charts. Using the study results, we employ Bayesian modelling to predict participant classification of diagram complexity. We find that, while multiple visual features are important in contributing to alluvial diagram complexity, interestingly the importance of features seems to depend on the type of complexity being modeled, i.e. task complexity vs. perceived complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信