有界度最接近系统发育二根问题的近似算法

Md. Ahsanur Rahman, Md. Rafiqul Islam
{"title":"有界度最接近系统发育二根问题的近似算法","authors":"Md. Ahsanur Rahman, Md. Rafiqul Islam","doi":"10.1109/ICCITECHN.2010.5723821","DOIUrl":null,"url":null,"abstract":"The degree Δ-closest phylogenetic 2nd root problem (ΔCPR<inf>2</inf>) is an NP-hard problem concerning phylogenetic tree reconstruction from a graph representing the similarities of the species concerned. Here we present an approximation algorithm for this problem for any fixed Δ > 3. When |V| > 3Δ − 1, our algorithm yields an approximation ratio of max((Δ−2)/α, 2), where α > 1 is a constant whose value depends on the values of |V| and Δ.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"63 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An approximation algorithm for bounded degree closest phylogenetic 2nd root problem\",\"authors\":\"Md. Ahsanur Rahman, Md. Rafiqul Islam\",\"doi\":\"10.1109/ICCITECHN.2010.5723821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The degree Δ-closest phylogenetic 2nd root problem (ΔCPR<inf>2</inf>) is an NP-hard problem concerning phylogenetic tree reconstruction from a graph representing the similarities of the species concerned. Here we present an approximation algorithm for this problem for any fixed Δ > 3. When |V| > 3Δ − 1, our algorithm yields an approximation ratio of max((Δ−2)/α, 2), where α > 1 is a constant whose value depends on the values of |V| and Δ.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"63 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

度Δ-closest系统发育二根问题(ΔCPR2)是一个NP-hard问题,涉及从表示有关物种相似性的图中重建系统发育树。在这里,我们提出了一个近似算法对于任何固定Δ > 3的问题。当|V| > 3Δ−1时,我们的算法产生max((Δ−2)/α, 2)的近似比率,其中α > 1是一个常数,其值取决于|V|和Δ的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approximation algorithm for bounded degree closest phylogenetic 2nd root problem
The degree Δ-closest phylogenetic 2nd root problem (ΔCPR2) is an NP-hard problem concerning phylogenetic tree reconstruction from a graph representing the similarities of the species concerned. Here we present an approximation algorithm for this problem for any fixed Δ > 3. When |V| > 3Δ − 1, our algorithm yields an approximation ratio of max((Δ−2)/α, 2), where α > 1 is a constant whose value depends on the values of |V| and Δ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信