{"title":"集成分类的相关冗余特征分析","authors":"Rakkrit Duangsoithong, T. Windeatt","doi":"10.1109/ICAPR.2009.36","DOIUrl":null,"url":null,"abstract":"Feature selection and ensemble classification increase system efficiency and accuracy in machine learning, data mining and biomedical informatics. This research presents an analysis of the effect of removing irrelevant and redundant features with ensemble classifiers using two datasets from UCI machine learning repository. Accuracy and computational time were evaluated by four base classifiers; NaiveBayes, Multilayer Perceptron, Support Vector Machines and Decision Tree. Eliminating irrelevant features improves accuracy and reduces computational time while removing redundant features reduces computational time and reduces accuracy of the ensemble.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Relevant and Redundant Feature Analysis with Ensemble Classification\",\"authors\":\"Rakkrit Duangsoithong, T. Windeatt\",\"doi\":\"10.1109/ICAPR.2009.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection and ensemble classification increase system efficiency and accuracy in machine learning, data mining and biomedical informatics. This research presents an analysis of the effect of removing irrelevant and redundant features with ensemble classifiers using two datasets from UCI machine learning repository. Accuracy and computational time were evaluated by four base classifiers; NaiveBayes, Multilayer Perceptron, Support Vector Machines and Decision Tree. Eliminating irrelevant features improves accuracy and reduces computational time while removing redundant features reduces computational time and reduces accuracy of the ensemble.\",\"PeriodicalId\":443926,\"journal\":{\"name\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPR.2009.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Relevant and Redundant Feature Analysis with Ensemble Classification
Feature selection and ensemble classification increase system efficiency and accuracy in machine learning, data mining and biomedical informatics. This research presents an analysis of the effect of removing irrelevant and redundant features with ensemble classifiers using two datasets from UCI machine learning repository. Accuracy and computational time were evaluated by four base classifiers; NaiveBayes, Multilayer Perceptron, Support Vector Machines and Decision Tree. Eliminating irrelevant features improves accuracy and reduces computational time while removing redundant features reduces computational time and reduces accuracy of the ensemble.