凸最优不确定性量化:电网储能布局的算法和案例研究

Shuo Han, U. Topcu, Molei Tao, H. Owhadi, R. Murray
{"title":"凸最优不确定性量化:电网储能布局的算法和案例研究","authors":"Shuo Han, U. Topcu, Molei Tao, H. Owhadi, R. Murray","doi":"10.1109/ACC.2013.6579988","DOIUrl":null,"url":null,"abstract":"How does one evaluate the performance of a stochastic system in the absence of a perfect model (i.e. probability distribution)? We address this question under the framework of optimal uncertainty quantification (OUQ), which is an information-based approach for worst-case analysis of stochastic systems. We are able to generalize previous results and show that the OUQ problem can be solved using convex optimization when the function under evaluation can be expressed in a polytopic canonical form (PCF). We also propose iterative methods for scaling the convex formulation to larger systems. As an application, we study the problem of storage placement in power grids with renewable generation. Numerical simulation results for simple artificial examples as well as an example using the IEEE 14-bus test case with real wind generation data are presented to demonstrate the usage of OUQ analysis.","PeriodicalId":145065,"journal":{"name":"2013 American Control Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Convex optimal uncertainty quantification: Algorithms and a case study in energy storage placement for power grids\",\"authors\":\"Shuo Han, U. Topcu, Molei Tao, H. Owhadi, R. Murray\",\"doi\":\"10.1109/ACC.2013.6579988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How does one evaluate the performance of a stochastic system in the absence of a perfect model (i.e. probability distribution)? We address this question under the framework of optimal uncertainty quantification (OUQ), which is an information-based approach for worst-case analysis of stochastic systems. We are able to generalize previous results and show that the OUQ problem can be solved using convex optimization when the function under evaluation can be expressed in a polytopic canonical form (PCF). We also propose iterative methods for scaling the convex formulation to larger systems. As an application, we study the problem of storage placement in power grids with renewable generation. Numerical simulation results for simple artificial examples as well as an example using the IEEE 14-bus test case with real wind generation data are presented to demonstrate the usage of OUQ analysis.\",\"PeriodicalId\":145065,\"journal\":{\"name\":\"2013 American Control Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2013.6579988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2013.6579988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在没有完美模型(即概率分布)的情况下,如何评估随机系统的性能?我们在最优不确定性量化(OUQ)框架下解决这个问题,OUQ是一种基于信息的随机系统最坏情况分析方法。我们可以推广之前的结果,并证明当待评估的函数可以用多边形规范形式(PCF)表示时,OUQ问题可以用凸优化来解决。我们还提出了将凸公式扩展到更大系统的迭代方法。作为一个应用,我们研究了可再生能源发电电网中的储能配置问题。给出了简单人工算例的数值模拟结果,以及使用IEEE 14总线测试用例的实际风力发电数据的示例,以说明OUQ分析的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convex optimal uncertainty quantification: Algorithms and a case study in energy storage placement for power grids
How does one evaluate the performance of a stochastic system in the absence of a perfect model (i.e. probability distribution)? We address this question under the framework of optimal uncertainty quantification (OUQ), which is an information-based approach for worst-case analysis of stochastic systems. We are able to generalize previous results and show that the OUQ problem can be solved using convex optimization when the function under evaluation can be expressed in a polytopic canonical form (PCF). We also propose iterative methods for scaling the convex formulation to larger systems. As an application, we study the problem of storage placement in power grids with renewable generation. Numerical simulation results for simple artificial examples as well as an example using the IEEE 14-bus test case with real wind generation data are presented to demonstrate the usage of OUQ analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信