一类非线性机械系统运动的稳定性和极限有界性

Sergey S. Fadeev
{"title":"一类非线性机械系统运动的稳定性和极限有界性","authors":"Sergey S. Fadeev","doi":"10.1109/SCP.2015.7342045","DOIUrl":null,"url":null,"abstract":"A nonlinear mechanical system with nonconservative forces, two-component homogeneous potential forces and control forces of a special form is considered. On the basis of the Lyapunov functions method, several theorems that provide sufficient conditions of asymptotic stability of system's equilibrium position and sufficient conditions of ultimate boundedness of its solutions are proved.","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"7 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stability and ultimate boundedness of motions of a class of nonlinear mechanical systems\",\"authors\":\"Sergey S. Fadeev\",\"doi\":\"10.1109/SCP.2015.7342045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlinear mechanical system with nonconservative forces, two-component homogeneous potential forces and control forces of a special form is considered. On the basis of the Lyapunov functions method, several theorems that provide sufficient conditions of asymptotic stability of system's equilibrium position and sufficient conditions of ultimate boundedness of its solutions are proved.\",\"PeriodicalId\":110366,\"journal\":{\"name\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"volume\":\"7 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference \\\"Stability and Control Processes\\\" in Memory of V.I. Zubov (SCP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCP.2015.7342045\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑了具有非保守力、双分量齐次位力和特殊形式的控制力的非线性机械系统。在李雅普诺夫函数方法的基础上,证明了系统平衡位置渐近稳定的充分条件及其解的最终有界性的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stability and ultimate boundedness of motions of a class of nonlinear mechanical systems
A nonlinear mechanical system with nonconservative forces, two-component homogeneous potential forces and control forces of a special form is considered. On the basis of the Lyapunov functions method, several theorems that provide sufficient conditions of asymptotic stability of system's equilibrium position and sufficient conditions of ultimate boundedness of its solutions are proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信