注意机制的分类算法研究

Zhuoqun Yang, Tao Zhang, Jie Yang
{"title":"注意机制的分类算法研究","authors":"Zhuoqun Yang, Tao Zhang, Jie Yang","doi":"10.1109/DCABES50732.2020.00058","DOIUrl":null,"url":null,"abstract":"In this paper, we solve the image classification task by capturing context dependencies based on spatial and channel attention mechanism. Unlike previous research on feature fusion, we propose an attention module based on spatial and channel dimensions. This module derives attention maps respectively from spatial and channel, then for feature refinement we multiply the attention map into the feature map. Meanwhile, the module can be easily embedded into the network structures due to it is lightweight. The channel attention module selectively enhances some feature channels and suppresses certain feature channels by integrating the relationship between each feature channel. By weighting the features of all locations, spatial attention module aggregates location features. Regardless of distance, similar features are interrelated. Our module is evaluated through experiments on the ImageNet-1K and CIFAR-100 datasets.","PeriodicalId":351404,"journal":{"name":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Research on classification algorithms for attention mechanism\",\"authors\":\"Zhuoqun Yang, Tao Zhang, Jie Yang\",\"doi\":\"10.1109/DCABES50732.2020.00058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we solve the image classification task by capturing context dependencies based on spatial and channel attention mechanism. Unlike previous research on feature fusion, we propose an attention module based on spatial and channel dimensions. This module derives attention maps respectively from spatial and channel, then for feature refinement we multiply the attention map into the feature map. Meanwhile, the module can be easily embedded into the network structures due to it is lightweight. The channel attention module selectively enhances some feature channels and suppresses certain feature channels by integrating the relationship between each feature channel. By weighting the features of all locations, spatial attention module aggregates location features. Regardless of distance, similar features are interrelated. Our module is evaluated through experiments on the ImageNet-1K and CIFAR-100 datasets.\",\"PeriodicalId\":351404,\"journal\":{\"name\":\"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCABES50732.2020.00058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCABES50732.2020.00058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文基于空间注意机制和通道注意机制,通过捕获上下文依赖关系来解决图像分类问题。与以往的特征融合研究不同,本文提出了一种基于空间维度和通道维度的注意力模块。该模块分别从空间和通道提取注意图,然后将注意图相乘到特征图中进行特征细化。同时,该模块重量轻,可以很容易地嵌入到网络结构中。通道注意模块通过整合各个特征通道之间的关系,选择性地增强某些特征通道,抑制某些特征通道。空间注意力模块通过对所有位置的特征进行加权,将位置特征进行聚合。无论距离如何,相似的特征都是相互关联的。我们的模块通过在ImageNet-1K和CIFAR-100数据集上的实验进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on classification algorithms for attention mechanism
In this paper, we solve the image classification task by capturing context dependencies based on spatial and channel attention mechanism. Unlike previous research on feature fusion, we propose an attention module based on spatial and channel dimensions. This module derives attention maps respectively from spatial and channel, then for feature refinement we multiply the attention map into the feature map. Meanwhile, the module can be easily embedded into the network structures due to it is lightweight. The channel attention module selectively enhances some feature channels and suppresses certain feature channels by integrating the relationship between each feature channel. By weighting the features of all locations, spatial attention module aggregates location features. Regardless of distance, similar features are interrelated. Our module is evaluated through experiments on the ImageNet-1K and CIFAR-100 datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信