基于二值化和随机计算的神经网络容错性

Amir Ardakani, A. Ardakani, W. Gross
{"title":"基于二值化和随机计算的神经网络容错性","authors":"Amir Ardakani, A. Ardakani, W. Gross","doi":"10.1109/SiPS52927.2021.00018","DOIUrl":null,"url":null,"abstract":"Both binarized and stochastic computing-based neural networks exploit bit-wise operations to replace expensive full-precision multiplications with simple XNOR gates and thus, offer low-cost hardware implementation. In stochastic computing, arithmetic computations are performed on sequences of random bits which can approximate any real values. Stochastic computing-based neural networks benefit from approximate computing and promote fault-tolerant architectures against soft errors in noisy environments. On the other hand, in binarized neural networks, real values are deterministically binarized using the sign function. As a result, any bit-flip in the binarized values dramatically changes the outcome of arithmetic computations and makes binarized neural networks more vulnerable against soft errors. In this paper, we compare these two neural networks against each other in terms of fault-tolerance and hardware complexity (i.e., area and energy efficiency).","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fault-Tolerance of Binarized and Stochastic Computing-based Neural Networks\",\"authors\":\"Amir Ardakani, A. Ardakani, W. Gross\",\"doi\":\"10.1109/SiPS52927.2021.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both binarized and stochastic computing-based neural networks exploit bit-wise operations to replace expensive full-precision multiplications with simple XNOR gates and thus, offer low-cost hardware implementation. In stochastic computing, arithmetic computations are performed on sequences of random bits which can approximate any real values. Stochastic computing-based neural networks benefit from approximate computing and promote fault-tolerant architectures against soft errors in noisy environments. On the other hand, in binarized neural networks, real values are deterministically binarized using the sign function. As a result, any bit-flip in the binarized values dramatically changes the outcome of arithmetic computations and makes binarized neural networks more vulnerable against soft errors. In this paper, we compare these two neural networks against each other in terms of fault-tolerance and hardware complexity (i.e., area and energy efficiency).\",\"PeriodicalId\":103894,\"journal\":{\"name\":\"2021 IEEE Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS52927.2021.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

二值化和基于随机计算的神经网络都利用位操作,用简单的XNOR门取代昂贵的全精度乘法,从而提供低成本的硬件实现。在随机计算中,对可以近似任何实数的随机位序列进行算术计算。基于随机计算的神经网络受益于近似计算,并促进了对噪声环境中软错误的容错架构。另一方面,在二值化神经网络中,使用符号函数对实值进行确定性二值化。因此,二值化值中的任何位翻转都会极大地改变算术计算的结果,并使二值化神经网络更容易受到软错误的攻击。在本文中,我们将这两种神经网络在容错性和硬件复杂性(即面积和能源效率)方面进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault-Tolerance of Binarized and Stochastic Computing-based Neural Networks
Both binarized and stochastic computing-based neural networks exploit bit-wise operations to replace expensive full-precision multiplications with simple XNOR gates and thus, offer low-cost hardware implementation. In stochastic computing, arithmetic computations are performed on sequences of random bits which can approximate any real values. Stochastic computing-based neural networks benefit from approximate computing and promote fault-tolerant architectures against soft errors in noisy environments. On the other hand, in binarized neural networks, real values are deterministically binarized using the sign function. As a result, any bit-flip in the binarized values dramatically changes the outcome of arithmetic computations and makes binarized neural networks more vulnerable against soft errors. In this paper, we compare these two neural networks against each other in terms of fault-tolerance and hardware complexity (i.e., area and energy efficiency).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信