层次交互回归模型的神经网络估计的收敛率

M. Kohler, A. Krzyżak
{"title":"层次交互回归模型的神经网络估计的收敛率","authors":"M. Kohler, A. Krzyżak","doi":"10.1109/ISIT.2016.7541444","DOIUrl":null,"url":null,"abstract":"Regression estimation often suffers from the curse of dimensionality. In the present paper we circumvent this problem by introducing a class of models called hierarchical interaction models where the values of a function m : ℝd → ℝ are computed in a feed-forward manner in several layers, where in each layer a function of at most d* inputs produced by the previous layer is computed. We introduce regression estimates based on neural networks with two hidden layers and apply them to estimation of regression functions from a class of hierarchical interaction models. Under smoothness condition imposed on all functions occurring in the model we show that the rate of convergence of these estimates depends on d*, which is typically much smaller than d.","PeriodicalId":198767,"journal":{"name":"2016 IEEE International Symposium on Information Theory (ISIT)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The rates of convergence of neural network estimates of hierarchical interaction regression models\",\"authors\":\"M. Kohler, A. Krzyżak\",\"doi\":\"10.1109/ISIT.2016.7541444\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regression estimation often suffers from the curse of dimensionality. In the present paper we circumvent this problem by introducing a class of models called hierarchical interaction models where the values of a function m : ℝd → ℝ are computed in a feed-forward manner in several layers, where in each layer a function of at most d* inputs produced by the previous layer is computed. We introduce regression estimates based on neural networks with two hidden layers and apply them to estimation of regression functions from a class of hierarchical interaction models. Under smoothness condition imposed on all functions occurring in the model we show that the rate of convergence of these estimates depends on d*, which is typically much smaller than d.\",\"PeriodicalId\":198767,\"journal\":{\"name\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Symposium on Information Theory (ISIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2016.7541444\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2016.7541444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

回归估计经常遭受维度的诅咒。在本文中,我们通过引入一类称为分层交互模型的模型来规避这个问题,其中函数m:∈d→∈的值以前馈方式在几层中计算,其中在每一层中计算由前一层产生的最多d*个输入的函数。我们引入了基于两隐层神经网络的回归估计,并将其应用于一类层次交互模型的回归函数估计。在对模型中出现的所有函数施加平滑条件下,我们表明这些估计的收敛速度取决于d*,它通常比d小得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The rates of convergence of neural network estimates of hierarchical interaction regression models
Regression estimation often suffers from the curse of dimensionality. In the present paper we circumvent this problem by introducing a class of models called hierarchical interaction models where the values of a function m : ℝd → ℝ are computed in a feed-forward manner in several layers, where in each layer a function of at most d* inputs produced by the previous layer is computed. We introduce regression estimates based on neural networks with two hidden layers and apply them to estimation of regression functions from a class of hierarchical interaction models. Under smoothness condition imposed on all functions occurring in the model we show that the rate of convergence of these estimates depends on d*, which is typically much smaller than d.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信