利用图数据库进行潮流分析的双层PageRank算法探索

Chen Yuan, Yi Lu, Kewen Liu, Guangyi Liu, Renchang Dai, Zhiwei Wang
{"title":"利用图数据库进行潮流分析的双层PageRank算法探索","authors":"Chen Yuan, Yi Lu, Kewen Liu, Guangyi Liu, Renchang Dai, Zhiwei Wang","doi":"10.1109/BigDataCongress.2018.00026","DOIUrl":null,"url":null,"abstract":"Compared with traditional relational database, graph database (GDB) is a natural expression of most real-world systems. Each node in the GDB is not only a storage unit, but also a logic operation unit to implement local computation in parallel. This paper firstly explores the feasibility of power system modeling using GDB. Then a brief introduction of the PageRank algorithm and the feasibility analysis of its application in GDB are presented. Then the proposed GDB based bi-level PageRank algorithm is developed from PageRank algorithm and Gauss-Seidel methodology realize high performance parallel computation. MP 10790 case, and its extensions, MP 10790*10 and MP 10790*100, are tested to verify the proposed method and investigate its parallelism in GDB. Besides, a provincial system, FJ case which include 1425 buses and 1922 branches, is also included in the case study to further prove the proposed algorithm's effectiveness in real world.","PeriodicalId":177250,"journal":{"name":"2018 IEEE International Congress on Big Data (BigData Congress)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Exploration of Bi-Level PageRank Algorithm for Power Flow Analysis Using Graph Database\",\"authors\":\"Chen Yuan, Yi Lu, Kewen Liu, Guangyi Liu, Renchang Dai, Zhiwei Wang\",\"doi\":\"10.1109/BigDataCongress.2018.00026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared with traditional relational database, graph database (GDB) is a natural expression of most real-world systems. Each node in the GDB is not only a storage unit, but also a logic operation unit to implement local computation in parallel. This paper firstly explores the feasibility of power system modeling using GDB. Then a brief introduction of the PageRank algorithm and the feasibility analysis of its application in GDB are presented. Then the proposed GDB based bi-level PageRank algorithm is developed from PageRank algorithm and Gauss-Seidel methodology realize high performance parallel computation. MP 10790 case, and its extensions, MP 10790*10 and MP 10790*100, are tested to verify the proposed method and investigate its parallelism in GDB. Besides, a provincial system, FJ case which include 1425 buses and 1922 branches, is also included in the case study to further prove the proposed algorithm's effectiveness in real world.\",\"PeriodicalId\":177250,\"journal\":{\"name\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Congress on Big Data (BigData Congress)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BigDataCongress.2018.00026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Congress on Big Data (BigData Congress)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BigDataCongress.2018.00026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

与传统的关系数据库相比,图形数据库(GDB)是大多数现实系统的自然表达。GDB中的每个节点不仅是一个存储单元,而且是一个逻辑运算单元,实现本地并行计算。本文首先探讨了利用GDB进行电力系统建模的可行性。然后简要介绍了PageRank算法,并对其在GDB中的应用进行了可行性分析。然后在PageRank算法和Gauss-Seidel方法的基础上发展了基于GDB的双层PageRank算法,实现了高性能并行计算。对mp10790实例及其扩展,mp10790 *10和mp10790 *100进行了测试,验证了所提出的方法,并研究了其在GDB中的并行性。此外,还以一个省级系统FJ为例进行了案例研究,该系统包括1425辆公交车和1922个分支机构,进一步证明了该算法在现实世界中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploration of Bi-Level PageRank Algorithm for Power Flow Analysis Using Graph Database
Compared with traditional relational database, graph database (GDB) is a natural expression of most real-world systems. Each node in the GDB is not only a storage unit, but also a logic operation unit to implement local computation in parallel. This paper firstly explores the feasibility of power system modeling using GDB. Then a brief introduction of the PageRank algorithm and the feasibility analysis of its application in GDB are presented. Then the proposed GDB based bi-level PageRank algorithm is developed from PageRank algorithm and Gauss-Seidel methodology realize high performance parallel computation. MP 10790 case, and its extensions, MP 10790*10 and MP 10790*100, are tested to verify the proposed method and investigate its parallelism in GDB. Besides, a provincial system, FJ case which include 1425 buses and 1922 branches, is also included in the case study to further prove the proposed algorithm's effectiveness in real world.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信