遗传程序在预测变化和缺陷方面有多好?

C. Marinescu
{"title":"遗传程序在预测变化和缺陷方面有多好?","authors":"C. Marinescu","doi":"10.1109/SYNASC.2014.78","DOIUrl":null,"url":null,"abstract":"One of the main problems practitioners have to deal with is the identification of change and defect proneness of source code entities (e.g., Classes). During the last years a lot of techniques have been employed for predicting change and defect proneness of classes. In this paper we study the capabilities of Genetic Programming for performing the addressed problem by measuring the precision and recall of the obtained predictions.","PeriodicalId":150575,"journal":{"name":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"How Good Is Genetic Programming at Predicting Changes and Defects?\",\"authors\":\"C. Marinescu\",\"doi\":\"10.1109/SYNASC.2014.78\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main problems practitioners have to deal with is the identification of change and defect proneness of source code entities (e.g., Classes). During the last years a lot of techniques have been employed for predicting change and defect proneness of classes. In this paper we study the capabilities of Genetic Programming for performing the addressed problem by measuring the precision and recall of the obtained predictions.\",\"PeriodicalId\":150575,\"journal\":{\"name\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2014.78\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2014.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

从业者必须处理的主要问题之一是识别源代码实体(例如,类)的变更和缺陷倾向。在过去的几年里,许多技术被用于预测类的变化和缺陷倾向。在本文中,我们通过测量得到的预测的精度和召回率来研究遗传规划执行所处理问题的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Good Is Genetic Programming at Predicting Changes and Defects?
One of the main problems practitioners have to deal with is the identification of change and defect proneness of source code entities (e.g., Classes). During the last years a lot of techniques have been employed for predicting change and defect proneness of classes. In this paper we study the capabilities of Genetic Programming for performing the addressed problem by measuring the precision and recall of the obtained predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信