利用神经网络计算垂直折射率剖面。与本体模型结果的比较

J. Claverie, J. Motsch
{"title":"利用神经网络计算垂直折射率剖面。与本体模型结果的比较","authors":"J. Claverie, J. Motsch","doi":"10.23919/USNC-URSI52669.2022.9887373","DOIUrl":null,"url":null,"abstract":"As ducting situations considerably modify the radar coverages in maritime situations, it is of major importance to characterize the corresponding refractivity profiles. A promising solution could be to use Neural Networks methods. Once trained by physical models they could be computationally efficient. Actually, the errors introduced by these techniques in terms of propagation results lies between 3 and 5 dB for a classical radar scenario. So other NN implementations with more hidden layers will have to be tested in the future.","PeriodicalId":104242,"journal":{"name":"2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computing vertical refractivity profiles by neural networks. Comparison with bulk model results\",\"authors\":\"J. Claverie, J. Motsch\",\"doi\":\"10.23919/USNC-URSI52669.2022.9887373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As ducting situations considerably modify the radar coverages in maritime situations, it is of major importance to characterize the corresponding refractivity profiles. A promising solution could be to use Neural Networks methods. Once trained by physical models they could be computationally efficient. Actually, the errors introduced by these techniques in terms of propagation results lies between 3 and 5 dB for a classical radar scenario. So other NN implementations with more hidden layers will have to be tested in the future.\",\"PeriodicalId\":104242,\"journal\":{\"name\":\"2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/USNC-URSI52669.2022.9887373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE USNC-URSI Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC-URSI52669.2022.9887373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于航道情况会极大地改变海上情况下的雷达覆盖范围,因此对相应的折射率剖面进行表征具有重要意义。一个有希望的解决方案是使用神经网络方法。一旦经过物理模型的训练,它们的计算效率就会很高。实际上,在经典雷达场景下,这些技术在传播结果方面引入的误差在3到5db之间。因此,其他具有更多隐藏层的NN实现将不得不在未来进行测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computing vertical refractivity profiles by neural networks. Comparison with bulk model results
As ducting situations considerably modify the radar coverages in maritime situations, it is of major importance to characterize the corresponding refractivity profiles. A promising solution could be to use Neural Networks methods. Once trained by physical models they could be computationally efficient. Actually, the errors introduced by these techniques in terms of propagation results lies between 3 and 5 dB for a classical radar scenario. So other NN implementations with more hidden layers will have to be tested in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信