快速免疫进化程序

Wei Gao
{"title":"快速免疫进化程序","authors":"Wei Gao","doi":"10.1109/CEC.2004.1330922","DOIUrl":null,"url":null,"abstract":"Evolutionary programming is a good global optimization method. By introduction, the improved adaptive mutation operation and improved selection operation based on thickness adjustment of artificial immune system into traditional evolutionary programming, a fast immunized evolutionary programming is proposed in this paper. At last, this algorithm is verified by simulation experiment of typical optimization function. The results of experiment show that, the proposed fast immunized evolutionary programming can improve not only the convergent speed of original algorithm but also the computation effect of original algorithm, and is a very good optimization method.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Fast immunized evolutionary programming\",\"authors\":\"Wei Gao\",\"doi\":\"10.1109/CEC.2004.1330922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Evolutionary programming is a good global optimization method. By introduction, the improved adaptive mutation operation and improved selection operation based on thickness adjustment of artificial immune system into traditional evolutionary programming, a fast immunized evolutionary programming is proposed in this paper. At last, this algorithm is verified by simulation experiment of typical optimization function. The results of experiment show that, the proposed fast immunized evolutionary programming can improve not only the convergent speed of original algorithm but also the computation effect of original algorithm, and is a very good optimization method.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1330922\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330922","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

进化规划是一种很好的全局优化方法。将改进的自适应突变操作和基于人工免疫系统厚度调整的改进选择操作引入到传统的进化规划中,提出了一种快速免疫进化规划方法。最后,通过典型优化函数的仿真实验对该算法进行了验证。实验结果表明,所提出的快速免疫进化规划不仅可以提高原算法的收敛速度,而且可以提高原算法的计算效果,是一种很好的优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast immunized evolutionary programming
Evolutionary programming is a good global optimization method. By introduction, the improved adaptive mutation operation and improved selection operation based on thickness adjustment of artificial immune system into traditional evolutionary programming, a fast immunized evolutionary programming is proposed in this paper. At last, this algorithm is verified by simulation experiment of typical optimization function. The results of experiment show that, the proposed fast immunized evolutionary programming can improve not only the convergent speed of original algorithm but also the computation effect of original algorithm, and is a very good optimization method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信