基于投影几何的LDPC码的解码结构

G. HariharaS., M. Chandra, Tarakapraveen Uppalapati, B. S. Adiga
{"title":"基于投影几何的LDPC码的解码结构","authors":"G. HariharaS., M. Chandra, Tarakapraveen Uppalapati, B. S. Adiga","doi":"10.1109/WD.2008.4812880","DOIUrl":null,"url":null,"abstract":"Projective geometry (PG) based low density parity check (LDPC) codes have many useful properties, including easy encoding and decoding by simple majority logic technique. With these useful features, they can be useful error control codes in future. In this paper, we present three novel architectures comprising of one parallel and two semi-parallel decoder architectures for popular PG-based LDPC codes. These architectures have no memory clash and further are reconfigurable for different lengths (and their corresponding rates). The three architectures can be configured either for the regular belief propagation based decoding or majority logic decoding (MLD).","PeriodicalId":247938,"journal":{"name":"2008 1st IFIP Wireless Days","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Decoding architectures for Projective Geometry based LDPC codes\",\"authors\":\"G. HariharaS., M. Chandra, Tarakapraveen Uppalapati, B. S. Adiga\",\"doi\":\"10.1109/WD.2008.4812880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Projective geometry (PG) based low density parity check (LDPC) codes have many useful properties, including easy encoding and decoding by simple majority logic technique. With these useful features, they can be useful error control codes in future. In this paper, we present three novel architectures comprising of one parallel and two semi-parallel decoder architectures for popular PG-based LDPC codes. These architectures have no memory clash and further are reconfigurable for different lengths (and their corresponding rates). The three architectures can be configured either for the regular belief propagation based decoding or majority logic decoding (MLD).\",\"PeriodicalId\":247938,\"journal\":{\"name\":\"2008 1st IFIP Wireless Days\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 1st IFIP Wireless Days\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WD.2008.4812880\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 1st IFIP Wireless Days","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WD.2008.4812880","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

基于射影几何(PG)的低密度奇偶校验(LDPC)码具有许多有用的特性,包括简单多数逻辑技术易于编码和解码。有了这些有用的特性,它们在将来可以成为有用的错误控制代码。在本文中,我们提出了三种新颖的架构,包括一个并行和两个半并行解码器架构,用于流行的基于pg的LDPC码。这些体系结构没有内存冲突,并且可以针对不同的长度(及其相应的速率)进行重新配置。这三种体系结构可以配置为基于常规信念传播的解码或多数逻辑解码(MLD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding architectures for Projective Geometry based LDPC codes
Projective geometry (PG) based low density parity check (LDPC) codes have many useful properties, including easy encoding and decoding by simple majority logic technique. With these useful features, they can be useful error control codes in future. In this paper, we present three novel architectures comprising of one parallel and two semi-parallel decoder architectures for popular PG-based LDPC codes. These architectures have no memory clash and further are reconfigurable for different lengths (and their corresponding rates). The three architectures can be configured either for the regular belief propagation based decoding or majority logic decoding (MLD).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信