基于图卷积的科技文章分类预测

S. Hirokawa, Takahiko Suzuki, Tetsuya Nakatoh
{"title":"基于图卷积的科技文章分类预测","authors":"S. Hirokawa, Takahiko Suzuki, Tetsuya Nakatoh","doi":"10.1109/IIAI-AAI50415.2020.00023","DOIUrl":null,"url":null,"abstract":"The convolution method that uses the IDs of citing paper and cited paper is known to improve the prediction performance of category of papers. This paper proposes a \"word convolution\" method that uses not only the IDs of the cited and citing papers, but also the words that appear in those papers. The proposed method improves the prediction performance (accuracy) 7% for the core dataset and 12% for the citeseer dataset and gives the same performance for the pubmed dataset compared with the state-of-the-art method.","PeriodicalId":188870,"journal":{"name":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of Category of Scientific Article by Graph Convolution\",\"authors\":\"S. Hirokawa, Takahiko Suzuki, Tetsuya Nakatoh\",\"doi\":\"10.1109/IIAI-AAI50415.2020.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The convolution method that uses the IDs of citing paper and cited paper is known to improve the prediction performance of category of papers. This paper proposes a \\\"word convolution\\\" method that uses not only the IDs of the cited and citing papers, but also the words that appear in those papers. The proposed method improves the prediction performance (accuracy) 7% for the core dataset and 12% for the citeseer dataset and gives the same performance for the pubmed dataset compared with the state-of-the-art method.\",\"PeriodicalId\":188870,\"journal\":{\"name\":\"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IIAI-AAI50415.2020.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 9th International Congress on Advanced Applied Informatics (IIAI-AAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIAI-AAI50415.2020.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用被引论文和被引论文id的卷积方法可以提高论文类别的预测性能。本文提出了一种“单词卷积”方法,该方法不仅使用被引用和被引用论文的id,还使用这些论文中出现的单词。该方法对核心数据集和citeseer数据集的预测性能(准确度)分别提高了7%和12%,对pubmed数据集的预测性能与现有方法相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of Category of Scientific Article by Graph Convolution
The convolution method that uses the IDs of citing paper and cited paper is known to improve the prediction performance of category of papers. This paper proposes a "word convolution" method that uses not only the IDs of the cited and citing papers, but also the words that appear in those papers. The proposed method improves the prediction performance (accuracy) 7% for the core dataset and 12% for the citeseer dataset and gives the same performance for the pubmed dataset compared with the state-of-the-art method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信