费曼积分与图的协同作用

S. Abreu, R. Britto, C. Duhr, E. Gardi, J. Matthew
{"title":"费曼积分与图的协同作用","authors":"S. Abreu, R. Britto, C. Duhr, E. Gardi, J. Matthew","doi":"10.22323/1.303.0047","DOIUrl":null,"url":null,"abstract":"We propose a general coaction for families of integrals appearing in the evaluation of Feynman diagrams, such as multiple polylogarithms and generalized hypergeometric functions. We further conjecture a link between this coaction and graphical operations on Feynman diagrams. At one-loop order, there is a basis of integrals for which this correspondence is fully explicit. We discuss features and present examples of the diagrammatic coaction on two-loop integrals. We also present the coaction for the functions ${}_{p+1}F_p$ and Appell $F_1$.","PeriodicalId":140132,"journal":{"name":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Coaction for Feynman integrals and diagrams\",\"authors\":\"S. Abreu, R. Britto, C. Duhr, E. Gardi, J. Matthew\",\"doi\":\"10.22323/1.303.0047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a general coaction for families of integrals appearing in the evaluation of Feynman diagrams, such as multiple polylogarithms and generalized hypergeometric functions. We further conjecture a link between this coaction and graphical operations on Feynman diagrams. At one-loop order, there is a basis of integrals for which this correspondence is fully explicit. We discuss features and present examples of the diagrammatic coaction on two-loop integrals. We also present the coaction for the functions ${}_{p+1}F_p$ and Appell $F_1$.\",\"PeriodicalId\":140132,\"journal\":{\"name\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.303.0047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Loops and Legs in Quantum Field Theory — PoS(LL2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.303.0047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

对于费曼图中出现的积分族,如多重多对数和广义超几何函数,我们提出了一个一般的互作用。我们进一步推测了这种相互作用与费曼图的图形运算之间的联系。在单环阶,存在一组积分,其中这种对应关系是完全显式的。我们讨论了双环积分的图解协同作用的特征,并给出了一些例子。我们还给出了函数${}_{p+1}F_p$和Appell $F_1$的交互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coaction for Feynman integrals and diagrams
We propose a general coaction for families of integrals appearing in the evaluation of Feynman diagrams, such as multiple polylogarithms and generalized hypergeometric functions. We further conjecture a link between this coaction and graphical operations on Feynman diagrams. At one-loop order, there is a basis of integrals for which this correspondence is fully explicit. We discuss features and present examples of the diagrammatic coaction on two-loop integrals. We also present the coaction for the functions ${}_{p+1}F_p$ and Appell $F_1$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信