{"title":"BP神经网络使微环权重库的精度提高了2位","authors":"Zhenming He, Junwei Cheng, Hailong Zhou, Jianji Dong, Xinliang Zhang","doi":"10.1117/12.2672581","DOIUrl":null,"url":null,"abstract":"We experimentally demonstrate a method for predicting and compensating the system error of a 3×3 on-chip microring resonator (MRR) weight bank using a pre-designed back propagation (BP) neural network. The system error can be quickly predicted and well compensated to improve the computation precision of optical matrix-vector multiplication (MVM), without bulky experimental devices. The results show that the computation precision can be increased from 5- bit to 7-bit. This work provides a weight accuracy improvement method for MRR-based photonic integrated chips for applications such as optical computing and optical communication.","PeriodicalId":422113,"journal":{"name":"Photonics and Optoelectronics Meetings","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BP neural network enables 2bits precision improvement for microring weight bank\",\"authors\":\"Zhenming He, Junwei Cheng, Hailong Zhou, Jianji Dong, Xinliang Zhang\",\"doi\":\"10.1117/12.2672581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We experimentally demonstrate a method for predicting and compensating the system error of a 3×3 on-chip microring resonator (MRR) weight bank using a pre-designed back propagation (BP) neural network. The system error can be quickly predicted and well compensated to improve the computation precision of optical matrix-vector multiplication (MVM), without bulky experimental devices. The results show that the computation precision can be increased from 5- bit to 7-bit. This work provides a weight accuracy improvement method for MRR-based photonic integrated chips for applications such as optical computing and optical communication.\",\"PeriodicalId\":422113,\"journal\":{\"name\":\"Photonics and Optoelectronics Meetings\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Optoelectronics Meetings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2672581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Optoelectronics Meetings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2672581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BP neural network enables 2bits precision improvement for microring weight bank
We experimentally demonstrate a method for predicting and compensating the system error of a 3×3 on-chip microring resonator (MRR) weight bank using a pre-designed back propagation (BP) neural network. The system error can be quickly predicted and well compensated to improve the computation precision of optical matrix-vector multiplication (MVM), without bulky experimental devices. The results show that the computation precision can be increased from 5- bit to 7-bit. This work provides a weight accuracy improvement method for MRR-based photonic integrated chips for applications such as optical computing and optical communication.