约束环境下四旋翼飞行器轨迹控制的神经网络控制器实验实现

Ahmed Mekky, T. Alberts, O. González
{"title":"约束环境下四旋翼飞行器轨迹控制的神经网络控制器实验实现","authors":"Ahmed Mekky, T. Alberts, O. González","doi":"10.1109/NAECON46414.2019.9058018","DOIUrl":null,"url":null,"abstract":"This paper presents the experimental results of the trajectory control of a Qball-X4 quadrotor in confined environments and with the presence of model uncertainties. The presented controller utilizes Artificial-Neural-Networks to adjust for aerodynamic and model uncertainties on-line. The provided experimental results show the robustness and effectiveness of the developed ANN controller when applied to the Qball X4 quadrotor.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Experimental Implementation of an ANN Controller for Quadrotor Trajectory Control in Confined Environment\",\"authors\":\"Ahmed Mekky, T. Alberts, O. González\",\"doi\":\"10.1109/NAECON46414.2019.9058018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the experimental results of the trajectory control of a Qball-X4 quadrotor in confined environments and with the presence of model uncertainties. The presented controller utilizes Artificial-Neural-Networks to adjust for aerodynamic and model uncertainties on-line. The provided experimental results show the robustness and effectiveness of the developed ANN controller when applied to the Qball X4 quadrotor.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9058018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文给出了Qball-X4四旋翼飞行器在受限环境和模型不确定性条件下的轨迹控制实验结果。该控制器利用人工神经网络对空气动力学和模型的不确定性进行在线调节。实验结果表明,所开发的人工神经网络控制器在Qball X4四旋翼飞行器上的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Implementation of an ANN Controller for Quadrotor Trajectory Control in Confined Environment
This paper presents the experimental results of the trajectory control of a Qball-X4 quadrotor in confined environments and with the presence of model uncertainties. The presented controller utilizes Artificial-Neural-Networks to adjust for aerodynamic and model uncertainties on-line. The provided experimental results show the robustness and effectiveness of the developed ANN controller when applied to the Qball X4 quadrotor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信