{"title":"复杂形状高强度铝件的热冲压","authors":"Liliang Wang, Jun Liu, Jianguo Lin","doi":"10.1201/9781351045636-140000228","DOIUrl":null,"url":null,"abstract":"Aluminum alloy components are important contribution to lightweight transportations for improving energy efficiency. However, formability of aluminum alloys at room temperature often hinders their further applications in the automotive, rail, or aerospace industries. The solution heat treatment, forming, and in-die quenching (HFQ®) process is an advanced forming technology that performs both forming and heat treatment simultaneously in a single operation. Since its inception, a significant amount of research has been made on the process to develop it further and to assess the feasibility of using it to form components with increasingly complicated geometries, from a growing variety of alloys. This entry summarizes the HFQ® research work, with the emphasis on the development, modeling, and applications of the technology for stamping complex-shaped high-strength aluminum panel components.","PeriodicalId":348912,"journal":{"name":"Encyclopedia of Aluminum and Its Alloys","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hot Stamping of Complex-Shaped High-Strength Aluminum Components\",\"authors\":\"Liliang Wang, Jun Liu, Jianguo Lin\",\"doi\":\"10.1201/9781351045636-140000228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aluminum alloy components are important contribution to lightweight transportations for improving energy efficiency. However, formability of aluminum alloys at room temperature often hinders their further applications in the automotive, rail, or aerospace industries. The solution heat treatment, forming, and in-die quenching (HFQ®) process is an advanced forming technology that performs both forming and heat treatment simultaneously in a single operation. Since its inception, a significant amount of research has been made on the process to develop it further and to assess the feasibility of using it to form components with increasingly complicated geometries, from a growing variety of alloys. This entry summarizes the HFQ® research work, with the emphasis on the development, modeling, and applications of the technology for stamping complex-shaped high-strength aluminum panel components.\",\"PeriodicalId\":348912,\"journal\":{\"name\":\"Encyclopedia of Aluminum and Its Alloys\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Aluminum and Its Alloys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781351045636-140000228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Aluminum and Its Alloys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351045636-140000228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hot Stamping of Complex-Shaped High-Strength Aluminum Components
Aluminum alloy components are important contribution to lightweight transportations for improving energy efficiency. However, formability of aluminum alloys at room temperature often hinders their further applications in the automotive, rail, or aerospace industries. The solution heat treatment, forming, and in-die quenching (HFQ®) process is an advanced forming technology that performs both forming and heat treatment simultaneously in a single operation. Since its inception, a significant amount of research has been made on the process to develop it further and to assess the feasibility of using it to form components with increasingly complicated geometries, from a growing variety of alloys. This entry summarizes the HFQ® research work, with the emphasis on the development, modeling, and applications of the technology for stamping complex-shaped high-strength aluminum panel components.