基于无限值Lukasiewicz语义的分级推理方法

David Picado Muiño
{"title":"基于无限值Lukasiewicz语义的分级推理方法","authors":"David Picado Muiño","doi":"10.1109/ISMVL.2010.54","DOIUrl":null,"url":null,"abstract":"We present a consequence relation for graded inference within the frame of infinite-valued Lukasiewicz semantics. We consider the premises to be true to at least a certain degree A and consider as consequences those sentences entailed to have a degree of truth at least some suitable threshold B. We focus on the study of some aspects and features of the consequence relation presented and, in particular, on the effect of variations in the thresholds A, B.","PeriodicalId":447743,"journal":{"name":"2010 40th IEEE International Symposium on Multiple-Valued Logic","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Graded Inference Approach Based on Infinite-Valued Lukasiewicz Semantics\",\"authors\":\"David Picado Muiño\",\"doi\":\"10.1109/ISMVL.2010.54\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a consequence relation for graded inference within the frame of infinite-valued Lukasiewicz semantics. We consider the premises to be true to at least a certain degree A and consider as consequences those sentences entailed to have a degree of truth at least some suitable threshold B. We focus on the study of some aspects and features of the consequence relation presented and, in particular, on the effect of variations in the thresholds A, B.\",\"PeriodicalId\":447743,\"journal\":{\"name\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 40th IEEE International Symposium on Multiple-Valued Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMVL.2010.54\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 40th IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2010.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在无限值Lukasiewicz语义的框架内,给出了分级推理的一个推论关系。我们认为前提至少在一定程度上a是真实的,并认为那些句子至少在一定程度上具有合适的阈值B作为结果。我们关注于所呈现的结果关系的某些方面和特征的研究,特别是阈值a, B的变化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Graded Inference Approach Based on Infinite-Valued Lukasiewicz Semantics
We present a consequence relation for graded inference within the frame of infinite-valued Lukasiewicz semantics. We consider the premises to be true to at least a certain degree A and consider as consequences those sentences entailed to have a degree of truth at least some suitable threshold B. We focus on the study of some aspects and features of the consequence relation presented and, in particular, on the effect of variations in the thresholds A, B.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信