线性高阶矩形微分矩阵控制系统的幂级数解

A. Pantelous, A. D. Karageorgos, G. Kalogeropoulos
{"title":"线性高阶矩形微分矩阵控制系统的幂级数解","authors":"A. Pantelous, A. D. Karageorgos, G. Kalogeropoulos","doi":"10.1109/MED.2009.5164562","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the solution of linear higher order rectangular differential matrix systems which are appeared in many applications of optimal and filtering control theory. The classical power series method is employed to obtain the analytic solution of linear higher order rectangular (singular) differential matrix equations. In the present paper, the authors provide some preliminary results for solving linear singular matrix systems with the power series approach.","PeriodicalId":422386,"journal":{"name":"2009 17th Mediterranean Conference on Control and Automation","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Power series solutions for linear higher order rectangular differential matrix control systems\",\"authors\":\"A. Pantelous, A. D. Karageorgos, G. Kalogeropoulos\",\"doi\":\"10.1109/MED.2009.5164562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the solution of linear higher order rectangular differential matrix systems which are appeared in many applications of optimal and filtering control theory. The classical power series method is employed to obtain the analytic solution of linear higher order rectangular (singular) differential matrix equations. In the present paper, the authors provide some preliminary results for solving linear singular matrix systems with the power series approach.\",\"PeriodicalId\":422386,\"journal\":{\"name\":\"2009 17th Mediterranean Conference on Control and Automation\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 17th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2009.5164562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 17th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2009.5164562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文研究线性高阶矩形微分矩阵系统的解,这类系统在最优控制理论和滤波控制理论的许多应用中都出现过。采用经典的幂级数法求解线性高阶矩形(奇异)微分矩阵方程的解析解。本文给出了用幂级数法求解线性奇异矩阵系统的一些初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Power series solutions for linear higher order rectangular differential matrix control systems
This paper is concerned with the solution of linear higher order rectangular differential matrix systems which are appeared in many applications of optimal and filtering control theory. The classical power series method is employed to obtain the analytic solution of linear higher order rectangular (singular) differential matrix equations. In the present paper, the authors provide some preliminary results for solving linear singular matrix systems with the power series approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信