一种基于模型的重删数据对数正态参数估计方法

R. Jiang, F. Q. Qi, Y. Cao
{"title":"一种基于模型的重删数据对数正态参数估计方法","authors":"R. Jiang, F. Q. Qi, Y. Cao","doi":"10.1109/ICRMS55680.2022.9944591","DOIUrl":null,"url":null,"abstract":"The density function of the lognormal distribution is unimodal and its mode is always smaller than its median life. For the type-I censoring test, if the censoring time is not larger than the median life, the censoring degree of the dataset obtained in this way will be larger than 50% on average, implying that the dataset is heavily censored. In this case, the classical parameter estimation methods generally cannot provide stable estimates, but a relatively accurate estimate of the mode can be obtained. According to this argument, this paper proposes a mode-based approach for estimating the parameters of the lognormal distribution on heavily censored data. The proposed approach first uses the midpoint Kaplan-Meier estimator to augment the data; then uses the lognormal Q-Q plot to estimate the mode of the density function, from which the scale parameter can be expressed as a function of the shape parameter; and finally uses a single-parameter maximum likelihood method to estimate the shape parameter. Six datasets are analyzed to illustrate the proposed approach and its appropriateness.","PeriodicalId":421500,"journal":{"name":"2022 13th International Conference on Reliability, Maintainability, and Safety (ICRMS)","volume":"7 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Mode-based Approach for Lognormal Parameter Estimation on Heavily Censored Data\",\"authors\":\"R. Jiang, F. Q. Qi, Y. Cao\",\"doi\":\"10.1109/ICRMS55680.2022.9944591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The density function of the lognormal distribution is unimodal and its mode is always smaller than its median life. For the type-I censoring test, if the censoring time is not larger than the median life, the censoring degree of the dataset obtained in this way will be larger than 50% on average, implying that the dataset is heavily censored. In this case, the classical parameter estimation methods generally cannot provide stable estimates, but a relatively accurate estimate of the mode can be obtained. According to this argument, this paper proposes a mode-based approach for estimating the parameters of the lognormal distribution on heavily censored data. The proposed approach first uses the midpoint Kaplan-Meier estimator to augment the data; then uses the lognormal Q-Q plot to estimate the mode of the density function, from which the scale parameter can be expressed as a function of the shape parameter; and finally uses a single-parameter maximum likelihood method to estimate the shape parameter. Six datasets are analyzed to illustrate the proposed approach and its appropriateness.\",\"PeriodicalId\":421500,\"journal\":{\"name\":\"2022 13th International Conference on Reliability, Maintainability, and Safety (ICRMS)\",\"volume\":\"7 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 13th International Conference on Reliability, Maintainability, and Safety (ICRMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRMS55680.2022.9944591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 13th International Conference on Reliability, Maintainability, and Safety (ICRMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRMS55680.2022.9944591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对数正态分布的密度函数是单峰的,它的模态总是小于它的中值寿命。对于i型审查检验,如果审查时间不大于中位数寿命,则以这种方式获得的数据集的审查程度平均大于50%,这意味着数据集被严重审查。在这种情况下,经典的参数估计方法通常不能提供稳定的估计,但可以获得相对准确的模态估计。根据这一论点,本文提出了一种基于模型的方法来估计重删减数据的对数正态分布的参数。提出的方法首先使用中点Kaplan-Meier估计量来扩充数据;然后利用对数正态Q-Q图估计密度函数的模态,从中可以将尺度参数表示为形状参数的函数;最后采用单参数极大似然法对形状参数进行估计。分析了六个数据集来说明所提出的方法及其适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Mode-based Approach for Lognormal Parameter Estimation on Heavily Censored Data
The density function of the lognormal distribution is unimodal and its mode is always smaller than its median life. For the type-I censoring test, if the censoring time is not larger than the median life, the censoring degree of the dataset obtained in this way will be larger than 50% on average, implying that the dataset is heavily censored. In this case, the classical parameter estimation methods generally cannot provide stable estimates, but a relatively accurate estimate of the mode can be obtained. According to this argument, this paper proposes a mode-based approach for estimating the parameters of the lognormal distribution on heavily censored data. The proposed approach first uses the midpoint Kaplan-Meier estimator to augment the data; then uses the lognormal Q-Q plot to estimate the mode of the density function, from which the scale parameter can be expressed as a function of the shape parameter; and finally uses a single-parameter maximum likelihood method to estimate the shape parameter. Six datasets are analyzed to illustrate the proposed approach and its appropriateness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信