反网格法及其在不可压缩流体-刚体相互作用模拟中的应用

S. Asao, K. Matsuno, M. Yamakawa
{"title":"反网格法及其在不可压缩流体-刚体相互作用模拟中的应用","authors":"S. Asao, K. Matsuno, M. Yamakawa","doi":"10.1299/JCST.5.163","DOIUrl":null,"url":null,"abstract":"In this paper, a Trans-mesh method is presented for simulating three-dimensional incompressible fluid-rigid body interaction with collisions. In the Trans-mesh method, the bodies can move freely in a main mesh that covers the entire flow field. The method is constructed based on the four-dimensional control volume in space-time unified domain such that the method assures to be divergence-free in the space-time unified domain and thus satisfies both the physical and geometrical conservation laws simultaneously. First of all, it is confirmed that the present method satisfies the geometric conservation law. Next, we did calculations for a single sphere settling under gravity in the stationary fluid to evaluate the present method. The method was applied to a flow around bodies driven by a flow in a square duct and the unsteady behavior of the flow is shown. The results indicate that this method is promising in such simulations.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Trans-Mesh Method and Its Application to Simulations of Incompressible Fluid-Rigid Bodies Interaction\",\"authors\":\"S. Asao, K. Matsuno, M. Yamakawa\",\"doi\":\"10.1299/JCST.5.163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a Trans-mesh method is presented for simulating three-dimensional incompressible fluid-rigid body interaction with collisions. In the Trans-mesh method, the bodies can move freely in a main mesh that covers the entire flow field. The method is constructed based on the four-dimensional control volume in space-time unified domain such that the method assures to be divergence-free in the space-time unified domain and thus satisfies both the physical and geometrical conservation laws simultaneously. First of all, it is confirmed that the present method satisfies the geometric conservation law. Next, we did calculations for a single sphere settling under gravity in the stationary fluid to evaluate the present method. The method was applied to a flow around bodies driven by a flow in a square duct and the unsteady behavior of the flow is shown. The results indicate that this method is promising in such simulations.\",\"PeriodicalId\":196913,\"journal\":{\"name\":\"Journal of Computational Science and Technology\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JCST.5.163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.5.163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种模拟三维不可压缩流体-刚体相互作用的跨网格法。在跨网格法中,物体可以在覆盖整个流场的主网格中自由移动。该方法基于时空统一域中的四维控制体构造,保证了该方法在时空统一域中的无发散性,从而同时满足物理和几何守恒定律。首先,证实了该方法满足几何守恒定律。接下来,我们对一个球体在静止流体中在重力作用下沉降进行了计算,以评估本方法。将该方法应用于方形管道中绕体流动,得到了绕体流动的非定常特性。结果表明,该方法在此类模拟中具有良好的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trans-Mesh Method and Its Application to Simulations of Incompressible Fluid-Rigid Bodies Interaction
In this paper, a Trans-mesh method is presented for simulating three-dimensional incompressible fluid-rigid body interaction with collisions. In the Trans-mesh method, the bodies can move freely in a main mesh that covers the entire flow field. The method is constructed based on the four-dimensional control volume in space-time unified domain such that the method assures to be divergence-free in the space-time unified domain and thus satisfies both the physical and geometrical conservation laws simultaneously. First of all, it is confirmed that the present method satisfies the geometric conservation law. Next, we did calculations for a single sphere settling under gravity in the stationary fluid to evaluate the present method. The method was applied to a flow around bodies driven by a flow in a square duct and the unsteady behavior of the flow is shown. The results indicate that this method is promising in such simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信