用插值法恢复希腊民间音乐中缺失的数据

P. Medentzidou, Constantine Kotropoulos
{"title":"用插值法恢复希腊民间音乐中缺失的数据","authors":"P. Medentzidou, Constantine Kotropoulos","doi":"10.1109/DMIAF.2016.7574912","DOIUrl":null,"url":null,"abstract":"Music recordings often suffer from noise. The noisy segments may be treated as missing data. To restore them, one may employ interpolation techniques. A music signal is modeled as an autoregressive process, and three interpolation methods are developed that are based on maximum likelihood, Gibbs sampling, and Expectation Maximization. The aforementioned techniques are tested for restoration of missing data in vocal and instrumental Greek folk songs. Experimental results show that interpolation techniques based on maximum likelihood and Gibbs sampling offer better restoration results than Expectation Maximization.","PeriodicalId":404025,"journal":{"name":"2016 Digital Media Industry & Academic Forum (DMIAF)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Restoration of missing data in Greek folk music by interpolation techniques\",\"authors\":\"P. Medentzidou, Constantine Kotropoulos\",\"doi\":\"10.1109/DMIAF.2016.7574912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music recordings often suffer from noise. The noisy segments may be treated as missing data. To restore them, one may employ interpolation techniques. A music signal is modeled as an autoregressive process, and three interpolation methods are developed that are based on maximum likelihood, Gibbs sampling, and Expectation Maximization. The aforementioned techniques are tested for restoration of missing data in vocal and instrumental Greek folk songs. Experimental results show that interpolation techniques based on maximum likelihood and Gibbs sampling offer better restoration results than Expectation Maximization.\",\"PeriodicalId\":404025,\"journal\":{\"name\":\"2016 Digital Media Industry & Academic Forum (DMIAF)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Digital Media Industry & Academic Forum (DMIAF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMIAF.2016.7574912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Digital Media Industry & Academic Forum (DMIAF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMIAF.2016.7574912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

音乐录音经常受到噪音的影响。噪声段可以作为缺失数据处理。为了恢复它们,可以使用插值技术。一个音乐信号被建模为一个自回归过程,并开发了三种插值方法,基于最大似然,吉布斯采样和期望最大化。上述技术用于恢复声乐和器乐希腊民歌中缺失的数据。实验结果表明,基于极大似然和Gibbs采样的插值方法比期望最大化方法具有更好的恢复效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Restoration of missing data in Greek folk music by interpolation techniques
Music recordings often suffer from noise. The noisy segments may be treated as missing data. To restore them, one may employ interpolation techniques. A music signal is modeled as an autoregressive process, and three interpolation methods are developed that are based on maximum likelihood, Gibbs sampling, and Expectation Maximization. The aforementioned techniques are tested for restoration of missing data in vocal and instrumental Greek folk songs. Experimental results show that interpolation techniques based on maximum likelihood and Gibbs sampling offer better restoration results than Expectation Maximization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信