基于ResNet50网络的海洋垃圾图像分类

Miao Dai, Youfu Jiang, Bei Pan
{"title":"基于ResNet50网络的海洋垃圾图像分类","authors":"Miao Dai, Youfu Jiang, Bei Pan","doi":"10.1117/12.2671344","DOIUrl":null,"url":null,"abstract":"In order to improve the efficiency of marine garbage classification, this study first enhances and processes the data set, then uses ResNet50 network model and modifies its lowest layer of network, and finally obtains the accuracy in different cycles through training and verification. The results show that the accuracy of the network model trained in this study is as high as 96% under the most stable cycle.","PeriodicalId":120866,"journal":{"name":"Artificial Intelligence and Big Data Forum","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of marine garbage image based on ResNet50 network\",\"authors\":\"Miao Dai, Youfu Jiang, Bei Pan\",\"doi\":\"10.1117/12.2671344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the efficiency of marine garbage classification, this study first enhances and processes the data set, then uses ResNet50 network model and modifies its lowest layer of network, and finally obtains the accuracy in different cycles through training and verification. The results show that the accuracy of the network model trained in this study is as high as 96% under the most stable cycle.\",\"PeriodicalId\":120866,\"journal\":{\"name\":\"Artificial Intelligence and Big Data Forum\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence and Big Data Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2671344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Big Data Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2671344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高海洋垃圾分类的效率,本研究首先对数据集进行增强和处理,然后使用ResNet50网络模型并对其最低层网络进行修改,最后通过训练和验证得到不同周期的准确率。结果表明,在最稳定周期下,本文训练的网络模型准确率高达96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of marine garbage image based on ResNet50 network
In order to improve the efficiency of marine garbage classification, this study first enhances and processes the data set, then uses ResNet50 network model and modifies its lowest layer of network, and finally obtains the accuracy in different cycles through training and verification. The results show that the accuracy of the network model trained in this study is as high as 96% under the most stable cycle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信