提高植物对相机差异的图像质量的执行,以光合作用色素的学习为基础

Felix Adrian Tjokro Atmodjo, K. R. Prilianti, Hendry Setiawan
{"title":"提高植物对相机差异的图像质量的执行,以光合作用色素的学习为基础","authors":"Felix Adrian Tjokro Atmodjo, K. R. Prilianti, Hendry Setiawan","doi":"10.24002/jbi.v14i01.6997","DOIUrl":null,"url":null,"abstract":"Implementation of Plant Image Quality Improvement based on Machine Learning on Camera Variation to Predict Photosynthetic Pigments. Pigments are natural dyes found in plants and animals. In photosynthesis, there are 3 essential pigments: chlorophyll, cartenoid, and anthocyanin. Pigment analysis can be performed with High Performance Liquid Chromatography (HPLC) and a spectrophotometer. However, HPLC and spectrophotometers require high resources and time. Thus, the Fuzzy Piction Android application built using the FP3Net model is the best choice in pigment prediction since it is low on cost and accessible. However, the Fuzzy Piction produces different performance, which is affected by light conditions and camera specifications. The experiment used ten sample images for Jasminum sp., P. betle, Syzygium oleina of green and red variations, and Graptophyllum pictum leaves with three smartphone cameras and three lighting levels. Improvements using 3D-TPS produced the best SSIM values in the range of 0.9191 – 0.9797 for images Syzygium oleina of green and red variations leaves, and the predicted MAE value of pigment was 0.0296 – 0.0492.Keywords: 3D-TPS, plant leaves, pigment, image quality improvement\n \nPigmen merupakan pewarna alami yang ditemukan pada tumbuhan dan hewan. Dalam proses fotosintesis terdapat tiga pigmen yang penting, yaitu klorofil, kartenoid, dan antosianin. Analisis pigmen dapat dilakukan dengan Kromatorafi Cair Kinerja Tinggi (KCKT) dan spektrofotometer. Namun,KCKT dan spektrofotometer membutuhkan sumber daya dan waktu yang tinggi. Sehingga, aplikasi Android Fuzzy Piction yang dibangun menggunakan model FP3Net mejadi pilihan dalam prediksi pigmen dengan biaya murah dan mudah. Akan tetapi, aplikasi Android Fuzzy Piction menghasilkan kinerja yang berbeda-beda yang dipengaruhi oleh kondisi cahaya dan spesifikasi kamera. Dilakukan percobaan dengan mengambil sepuluh sampel citra daun dari empat varietas tanaman yaitu, pucuk merah, daun ungu, melati, dan sirih. Citra diambil dengan tiga kamera smartphone dan tiga tingkat pencahayaan yang berbeda. Perbaikan yang dilakukan menggunakan algoritma 3D-TPS menghasilkan nilai SSIM terbaik pada rentang 0.9191 –0.9797 untuk citra daun pucuk merahdan nilai MAE prediksi pigmen sebesar 0.0296 –0.0492.Kata Kunci: 3D – TPS, daun tanaman, pigmen, perbaikan kualitas citra","PeriodicalId":381749,"journal":{"name":"Jurnal Buana Informatika","volume":"38 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementasi Perbaikan Kualitas Citra Tanaman terhadap Perbedaan Kamera untuk Prediksi Pigmen Fotosintesis berbasis Machine Learning\",\"authors\":\"Felix Adrian Tjokro Atmodjo, K. R. Prilianti, Hendry Setiawan\",\"doi\":\"10.24002/jbi.v14i01.6997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Implementation of Plant Image Quality Improvement based on Machine Learning on Camera Variation to Predict Photosynthetic Pigments. Pigments are natural dyes found in plants and animals. In photosynthesis, there are 3 essential pigments: chlorophyll, cartenoid, and anthocyanin. Pigment analysis can be performed with High Performance Liquid Chromatography (HPLC) and a spectrophotometer. However, HPLC and spectrophotometers require high resources and time. Thus, the Fuzzy Piction Android application built using the FP3Net model is the best choice in pigment prediction since it is low on cost and accessible. However, the Fuzzy Piction produces different performance, which is affected by light conditions and camera specifications. The experiment used ten sample images for Jasminum sp., P. betle, Syzygium oleina of green and red variations, and Graptophyllum pictum leaves with three smartphone cameras and three lighting levels. Improvements using 3D-TPS produced the best SSIM values in the range of 0.9191 – 0.9797 for images Syzygium oleina of green and red variations leaves, and the predicted MAE value of pigment was 0.0296 – 0.0492.Keywords: 3D-TPS, plant leaves, pigment, image quality improvement\\n \\nPigmen merupakan pewarna alami yang ditemukan pada tumbuhan dan hewan. Dalam proses fotosintesis terdapat tiga pigmen yang penting, yaitu klorofil, kartenoid, dan antosianin. Analisis pigmen dapat dilakukan dengan Kromatorafi Cair Kinerja Tinggi (KCKT) dan spektrofotometer. Namun,KCKT dan spektrofotometer membutuhkan sumber daya dan waktu yang tinggi. Sehingga, aplikasi Android Fuzzy Piction yang dibangun menggunakan model FP3Net mejadi pilihan dalam prediksi pigmen dengan biaya murah dan mudah. Akan tetapi, aplikasi Android Fuzzy Piction menghasilkan kinerja yang berbeda-beda yang dipengaruhi oleh kondisi cahaya dan spesifikasi kamera. Dilakukan percobaan dengan mengambil sepuluh sampel citra daun dari empat varietas tanaman yaitu, pucuk merah, daun ungu, melati, dan sirih. Citra diambil dengan tiga kamera smartphone dan tiga tingkat pencahayaan yang berbeda. Perbaikan yang dilakukan menggunakan algoritma 3D-TPS menghasilkan nilai SSIM terbaik pada rentang 0.9191 –0.9797 untuk citra daun pucuk merahdan nilai MAE prediksi pigmen sebesar 0.0296 –0.0492.Kata Kunci: 3D – TPS, daun tanaman, pigmen, perbaikan kualitas citra\",\"PeriodicalId\":381749,\"journal\":{\"name\":\"Jurnal Buana Informatika\",\"volume\":\"38 9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Buana Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24002/jbi.v14i01.6997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Buana Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24002/jbi.v14i01.6997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于相机变化的机器学习植物图像质量改进预测光合色素。色素是存在于植物和动物中的天然染料。在光合作用中,有三种必需的色素:叶绿素、类胡萝卜素和花青素。颜料分析可以用高效液相色谱法和分光光度计进行。然而,高效液相色谱法和分光光度法需要大量的资源和时间。因此,使用FP3Net模型构建的模糊图像Android应用程序是色素预测的最佳选择,因为它成本低且易于访问。然而,模糊图像产生不同的性能,这是由光线条件和相机规格的影响。实验采用3台智能手机相机和3种光照水平,对茉莉(Jasminum sp.)、天牛(P. betle)、油桐(Syzygium oleina)的绿色和红色变种和葡萄叶(Graptophyllum pictum)的10张样本图像进行了采集。3D-TPS改进后的油桐绿、红变异叶图像的SSIM预测值为0.9191 ~ 0.9797,色素预测MAE值为0.0296 ~ 0.0492。关键词:3D-TPS,植物叶片,色素,图像质量改善Dalam研究的主要内容为:三聚氰胺、丙二烯、丙二烯、类胡萝卜素、丹参素。用分光光度法分析KCKT色素。Namun,KCKT,但光谱英尺计,membutuhkan,数,天,丹,waktu,杨廷吉。应用于Android的模糊图像杨迪班君梦古那坎模型FP3Net mejadi pilihan dalam prediksi pigmen dengan biaya murah dan mudah。Akan tetapi,应用Android模糊图像识别系统menghasilkan kinerja yang berbeda-beda yang dipengaruhi kondisi cahaya dan spifikasi相机。Dilakukan percobaan dengan mengambil sepull样品citra dandandari empat品种:tanaman yaitu, pucuk merah, danungu, melati, dansirih。香橼diambil dengan tiga相机智能手机dantiga tingkat pencahayaan yang berbeda。Perbaikan yang dilakukan menggunakan算法3D-TPS menghasilkan nilai SSIM terbaik pagadrentang 0.9191 -0.9797 untuk citra dauppukmerahdan nilai MAE prediksi pigmen sebesar 0.0296 -0.0492。Kata Kunci: 3D - TPS,黎明tanaman, pigmen, perbaikan kualitas citra
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implementasi Perbaikan Kualitas Citra Tanaman terhadap Perbedaan Kamera untuk Prediksi Pigmen Fotosintesis berbasis Machine Learning
Implementation of Plant Image Quality Improvement based on Machine Learning on Camera Variation to Predict Photosynthetic Pigments. Pigments are natural dyes found in plants and animals. In photosynthesis, there are 3 essential pigments: chlorophyll, cartenoid, and anthocyanin. Pigment analysis can be performed with High Performance Liquid Chromatography (HPLC) and a spectrophotometer. However, HPLC and spectrophotometers require high resources and time. Thus, the Fuzzy Piction Android application built using the FP3Net model is the best choice in pigment prediction since it is low on cost and accessible. However, the Fuzzy Piction produces different performance, which is affected by light conditions and camera specifications. The experiment used ten sample images for Jasminum sp., P. betle, Syzygium oleina of green and red variations, and Graptophyllum pictum leaves with three smartphone cameras and three lighting levels. Improvements using 3D-TPS produced the best SSIM values in the range of 0.9191 – 0.9797 for images Syzygium oleina of green and red variations leaves, and the predicted MAE value of pigment was 0.0296 – 0.0492.Keywords: 3D-TPS, plant leaves, pigment, image quality improvement   Pigmen merupakan pewarna alami yang ditemukan pada tumbuhan dan hewan. Dalam proses fotosintesis terdapat tiga pigmen yang penting, yaitu klorofil, kartenoid, dan antosianin. Analisis pigmen dapat dilakukan dengan Kromatorafi Cair Kinerja Tinggi (KCKT) dan spektrofotometer. Namun,KCKT dan spektrofotometer membutuhkan sumber daya dan waktu yang tinggi. Sehingga, aplikasi Android Fuzzy Piction yang dibangun menggunakan model FP3Net mejadi pilihan dalam prediksi pigmen dengan biaya murah dan mudah. Akan tetapi, aplikasi Android Fuzzy Piction menghasilkan kinerja yang berbeda-beda yang dipengaruhi oleh kondisi cahaya dan spesifikasi kamera. Dilakukan percobaan dengan mengambil sepuluh sampel citra daun dari empat varietas tanaman yaitu, pucuk merah, daun ungu, melati, dan sirih. Citra diambil dengan tiga kamera smartphone dan tiga tingkat pencahayaan yang berbeda. Perbaikan yang dilakukan menggunakan algoritma 3D-TPS menghasilkan nilai SSIM terbaik pada rentang 0.9191 –0.9797 untuk citra daun pucuk merahdan nilai MAE prediksi pigmen sebesar 0.0296 –0.0492.Kata Kunci: 3D – TPS, daun tanaman, pigmen, perbaikan kualitas citra
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信