基于稀疏FIND特征的HDTV分辨率视频目标识别处理器的FPGA实现

Yuri Nishizumi, Go Matsukawa, K. Kajihara, T. Kodama, S. Izumi, H. Kawaguchi, C. Nakanishi, Toshio Goto, Takeo Kato, M. Yoshimoto
{"title":"基于稀疏FIND特征的HDTV分辨率视频目标识别处理器的FPGA实现","authors":"Yuri Nishizumi, Go Matsukawa, K. Kajihara, T. Kodama, S. Izumi, H. Kawaguchi, C. Nakanishi, Toshio Goto, Takeo Kato, M. Yoshimoto","doi":"10.1109/SiPS.2017.8109993","DOIUrl":null,"url":null,"abstract":"This paper describes FPGA implementation of object recognition processor for HDTV resolution 30 fps video using the Sparse FIND feature. Two-stage feature extraction processing by HOG and Sparse FIND, a highly parallel classification in the support vector machine (SVM), and a block-parallel processing for RAM access cycle reduction are proposed to perform a real time object recognition with enormous computational complexity. From implementation of the proposed architecture in the FPGA, it was confirmed that detection using the Sparse FIND feature was performed for HDTV images at 47.63 fps, on average, at 90 MHz. The recognition accuracy degradation from the original Sparse FIND-base object detection algorithm implemented on software was 0.5%, which shows that the FPGA system provides sufficient accuracy for practical use.","PeriodicalId":251688,"journal":{"name":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"FPGA implementation of object recognition processor for HDTV resolution video using sparse FIND feature\",\"authors\":\"Yuri Nishizumi, Go Matsukawa, K. Kajihara, T. Kodama, S. Izumi, H. Kawaguchi, C. Nakanishi, Toshio Goto, Takeo Kato, M. Yoshimoto\",\"doi\":\"10.1109/SiPS.2017.8109993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes FPGA implementation of object recognition processor for HDTV resolution 30 fps video using the Sparse FIND feature. Two-stage feature extraction processing by HOG and Sparse FIND, a highly parallel classification in the support vector machine (SVM), and a block-parallel processing for RAM access cycle reduction are proposed to perform a real time object recognition with enormous computational complexity. From implementation of the proposed architecture in the FPGA, it was confirmed that detection using the Sparse FIND feature was performed for HDTV images at 47.63 fps, on average, at 90 MHz. The recognition accuracy degradation from the original Sparse FIND-base object detection algorithm implemented on software was 0.5%, which shows that the FPGA system provides sufficient accuracy for practical use.\",\"PeriodicalId\":251688,\"journal\":{\"name\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Workshop on Signal Processing Systems (SiPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SiPS.2017.8109993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS.2017.8109993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了利用稀疏查找特性实现HDTV分辨率为30fps视频的目标识别处理器的FPGA实现。提出了基于HOG和Sparse FIND的两阶段特征提取处理、支持向量机(SVM)的高度并行分类和减少RAM访问周期的块并行处理来实现具有巨大计算复杂度的实时目标识别。通过在FPGA中实现所提出的架构,可以确认使用Sparse FIND特征对HDTV图像进行检测,平均帧率为47.63 fps,频率为90 MHz。在软件上实现的基于Sparse find的原始目标检测算法的识别精度下降了0.5%,表明FPGA系统具有足够的实际应用精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA implementation of object recognition processor for HDTV resolution video using sparse FIND feature
This paper describes FPGA implementation of object recognition processor for HDTV resolution 30 fps video using the Sparse FIND feature. Two-stage feature extraction processing by HOG and Sparse FIND, a highly parallel classification in the support vector machine (SVM), and a block-parallel processing for RAM access cycle reduction are proposed to perform a real time object recognition with enormous computational complexity. From implementation of the proposed architecture in the FPGA, it was confirmed that detection using the Sparse FIND feature was performed for HDTV images at 47.63 fps, on average, at 90 MHz. The recognition accuracy degradation from the original Sparse FIND-base object detection algorithm implemented on software was 0.5%, which shows that the FPGA system provides sufficient accuracy for practical use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信