基于群的联邦边函数放置方法

Andrei Palade, A. Mukhopadhyay, Aqeel H. Kazmi, Christian Cabrera, Evelyn Nomayo, Georgios Iosifidis, M. Ruffini, S. Clarke
{"title":"基于群的联邦边函数放置方法","authors":"Andrei Palade, A. Mukhopadhyay, Aqeel H. Kazmi, Christian Cabrera, Evelyn Nomayo, Georgios Iosifidis, M. Ruffini, S. Clarke","doi":"10.1109/SCC49832.2020.00013","DOIUrl":null,"url":null,"abstract":"Multi-access Edge Computing (MEC) provides cloud computing capabilities at the edge by offloading users’ service requests on MEC servers deployed at Base Stations (BS). Optimising the resource allocation on such distributed units in a physical area such as a city, especially for compute-intensive and latency-critical services, is a key challenge. We propose a swarm-based approach for placing functions in the edge using a serverless architecture, which does not require services to pre-occupy the required computing resources. The approach uses a probabilistic model to decide where to place the functions while considering the resources available at each MEC server and the latency between the physical servers and the application requester. A central controller with a federated view of available MEC servers orchestrates functions’ deployment and deals changes available resources. We compare our approach against the Best-Fit, Max-Fit, MultiOpt, ILP and Random baselines. Results show that our approach can reduce the latency of applications with limited effect on the resource utilisation.","PeriodicalId":274909,"journal":{"name":"2020 IEEE International Conference on Services Computing (SCC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Swarm-based Approach for Function Placement in Federated Edges\",\"authors\":\"Andrei Palade, A. Mukhopadhyay, Aqeel H. Kazmi, Christian Cabrera, Evelyn Nomayo, Georgios Iosifidis, M. Ruffini, S. Clarke\",\"doi\":\"10.1109/SCC49832.2020.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-access Edge Computing (MEC) provides cloud computing capabilities at the edge by offloading users’ service requests on MEC servers deployed at Base Stations (BS). Optimising the resource allocation on such distributed units in a physical area such as a city, especially for compute-intensive and latency-critical services, is a key challenge. We propose a swarm-based approach for placing functions in the edge using a serverless architecture, which does not require services to pre-occupy the required computing resources. The approach uses a probabilistic model to decide where to place the functions while considering the resources available at each MEC server and the latency between the physical servers and the application requester. A central controller with a federated view of available MEC servers orchestrates functions’ deployment and deals changes available resources. We compare our approach against the Best-Fit, Max-Fit, MultiOpt, ILP and Random baselines. Results show that our approach can reduce the latency of applications with limited effect on the resource utilisation.\",\"PeriodicalId\":274909,\"journal\":{\"name\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Services Computing (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC49832.2020.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Services Computing (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC49832.2020.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

MEC (Multi-access Edge Computing)通过将用户的业务请求卸载到部署在基站(Base station, BS)的MEC服务器上,在边缘提供云计算能力。优化城市等物理区域中此类分布式单元上的资源分配,特别是对于计算密集型和延迟关键型服务,是一项关键挑战。我们提出了一种基于集群的方法,使用无服务器架构将功能放置在边缘,该方法不需要服务预先占用所需的计算资源。该方法使用概率模型来决定将函数放置在何处,同时考虑每个MEC服务器上可用的资源以及物理服务器和应用程序请求者之间的延迟。具有可用MEC服务器联合视图的中央控制器协调功能的部署并处理可用资源的更改。我们将我们的方法与Best-Fit, Max-Fit, MultiOpt, ILP和Random基线进行比较。结果表明,我们的方法可以减少应用程序的延迟,而对资源利用率的影响有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Swarm-based Approach for Function Placement in Federated Edges
Multi-access Edge Computing (MEC) provides cloud computing capabilities at the edge by offloading users’ service requests on MEC servers deployed at Base Stations (BS). Optimising the resource allocation on such distributed units in a physical area such as a city, especially for compute-intensive and latency-critical services, is a key challenge. We propose a swarm-based approach for placing functions in the edge using a serverless architecture, which does not require services to pre-occupy the required computing resources. The approach uses a probabilistic model to decide where to place the functions while considering the resources available at each MEC server and the latency between the physical servers and the application requester. A central controller with a federated view of available MEC servers orchestrates functions’ deployment and deals changes available resources. We compare our approach against the Best-Fit, Max-Fit, MultiOpt, ILP and Random baselines. Results show that our approach can reduce the latency of applications with limited effect on the resource utilisation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信