一种基于qr分解的自适应反平方根仿射投影符号算法

S. Sitjongsataporn, S. Prongnuch, T. Wiangtong
{"title":"一种基于qr分解的自适应反平方根仿射投影符号算法","authors":"S. Sitjongsataporn, S. Prongnuch, T. Wiangtong","doi":"10.1109/ICPEI49860.2020.9431522","DOIUrl":null,"url":null,"abstract":"In this paper, we present an adaptive averaging step-size inverse square-root affine projection sign algorithm. Based on the QR-decomposition method, we derive the modified inverse autocorrelation matrix in order to reduce the complexity of inverse matrix, which a criterion is based on the proposed algorithm with the sign error. Adaptive averaging step-size mechanism is used for the fast adaptation. Convergence analysis in form of a posteriori error is presented. Simulation results show that the proposed algorithm can obtain clearly the better performance compared with the conventional affine projection algorithm.","PeriodicalId":342582,"journal":{"name":"2020 International Conference on Power, Energy and Innovations (ICPEI)","volume":"9 Suppl 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An Adaptive inverse Square-root Affine Projection Sign Algorithm based on QR-Decomposition\",\"authors\":\"S. Sitjongsataporn, S. Prongnuch, T. Wiangtong\",\"doi\":\"10.1109/ICPEI49860.2020.9431522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an adaptive averaging step-size inverse square-root affine projection sign algorithm. Based on the QR-decomposition method, we derive the modified inverse autocorrelation matrix in order to reduce the complexity of inverse matrix, which a criterion is based on the proposed algorithm with the sign error. Adaptive averaging step-size mechanism is used for the fast adaptation. Convergence analysis in form of a posteriori error is presented. Simulation results show that the proposed algorithm can obtain clearly the better performance compared with the conventional affine projection algorithm.\",\"PeriodicalId\":342582,\"journal\":{\"name\":\"2020 International Conference on Power, Energy and Innovations (ICPEI)\",\"volume\":\"9 Suppl 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Power, Energy and Innovations (ICPEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPEI49860.2020.9431522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Power, Energy and Innovations (ICPEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEI49860.2020.9431522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种自适应平均步长反平方根仿射投影符号算法。在qr分解方法的基础上,导出了改进的逆自相关矩阵,以降低逆矩阵的复杂度,并给出了基于该算法的带有符号误差的准则。采用自适应平均步长机制进行快速自适应。给出了后验误差形式的收敛分析。仿真结果表明,该算法明显优于传统的仿射投影算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive inverse Square-root Affine Projection Sign Algorithm based on QR-Decomposition
In this paper, we present an adaptive averaging step-size inverse square-root affine projection sign algorithm. Based on the QR-decomposition method, we derive the modified inverse autocorrelation matrix in order to reduce the complexity of inverse matrix, which a criterion is based on the proposed algorithm with the sign error. Adaptive averaging step-size mechanism is used for the fast adaptation. Convergence analysis in form of a posteriori error is presented. Simulation results show that the proposed algorithm can obtain clearly the better performance compared with the conventional affine projection algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信